Nonsynaptic NMDA Receptors Mediate Activity-Dependent Plasticity of Gap Junctional Coupling in the AII Amacrine Cell Network

Many neurons are coupled by electrical synapses into networks that have emergent properties. In the retina, coupling in these networks is dynamically regulated by changes in background illumination, optimizing signal integration for the visual environment. However, the mechanisms that control this plasticity are poorly understood. We have investigated these mechanisms in the rabbit AII amacrine cell, a multifunctional retinal neuron that forms an electrically coupled network via connexin 36 (Cx36) gap junctions. We find that presynaptic activity of glutamatergic ON bipolar cells drives increased phosphorylation of Cx36, indicative of increased coupling in the AII network. The phosphorylation is dependent on activation of nonsynaptic NMDA receptors that colocalize with Cx36 on AII amacrine cells, and is mediated by CaMKII. This activity-dependent increase in Cx36 phosphorylation works in opposition to dopamine-driven reduction of phosphorylation, establishing a local dynamic regulatory mechanism, and accounting for the nonlinear control of AII coupling by background illumination.

[1]  S. Massey,et al.  Rod pathways in the mammalian retina use connexin 36 , 2001, The Journal of comparative neurology.

[2]  S. Mills,et al.  Gap junctional regulatory mechanisms in the AII amacrine cell of the rabbit retina , 2004, Visual Neuroscience.

[3]  P. Sterling,et al.  Architecture of rod and cone circuits to the on-beta ganglion cell , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Béla Völgyi,et al.  Function and plasticity of homologous coupling between AII amacrine cells , 2004, Vision Research.

[5]  B. Connors,et al.  Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus , 2005, Science.

[6]  R. Weiler,et al.  Visual Transmission Deficits in Mice with Targeted Disruption of the Gap Junction Gene Connexin36 , 2001, The Journal of Neuroscience.

[7]  Fred Rieke,et al.  Review the Challenges Natural Images Pose for Visual Adaptation , 2022 .

[8]  Paul Witkovsky,et al.  Dopamine and retinal function , 2004, Documenta Ophthalmologica.

[9]  Robert G. Smith,et al.  The AII Amacrine Network: Coupling can Increase Correlated Activity , 1996, Vision Research.

[10]  R. Weiler,et al.  Expression of Neuronal Connexin36 in AII Amacrine Cells of the Mammalian Retina , 2001, The Journal of Neuroscience.

[11]  Moriel Zelikowsky,et al.  Electrical Synapses Control Hippocampal Contributions to Fear Learning and Memory , 2011, Science.

[12]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  M. Kavanaugh,et al.  Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Dacheux,et al.  AII amacrine cells in the rabbit retina possess AMPA-, NMDA-, GABA-, and glycine-activated currents , 2004, Visual Neuroscience.

[15]  J. Diamond,et al.  Diverse Mechanisms Underlie Glycinergic Feedback Transmission onto Rod Bipolar Cells in Rat Retina , 2008, The Journal of Neuroscience.

[16]  S. Bloomfield,et al.  Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina , 2002, Neuron.

[17]  E. Hartveit,et al.  AII amacrine cells express functional NMDA receptors , 1997, Neuroreport.

[18]  Wei Li,et al.  Simultaneous contribution of two rod pathways to AII amacrine and cone bipolar cell light responses. , 2005, Journal of neurophysiology.

[19]  R. Nicoll,et al.  Tonic activation of NMDA receptors by ambient glutamate enhances excitability of neurons. , 1989, Science.

[20]  N. Kamasawa,et al.  Connexin35 Mediates Electrical Transmission at Mixed Synapses on Mauthner Cells , 2003, The Journal of Neuroscience.

[21]  S. Bloomfield,et al.  Dark‐ and light‐induced changes in coupling between horizontal cells in mammalian retina , 1999, The Journal of comparative neurology.

[22]  A. Nairn,et al.  Variability of Distribution of Ca2+/Calmodulin-Dependent Kinase II at Mixed Synapses on the Mauthner Cell: Colocalization and Association with Connexin 35 , 2010, The Journal of Neuroscience.

[23]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[24]  D. I. Vaney,et al.  Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin , 1991, Neuroscience Letters.

[25]  E. Hartveit,et al.  Functional Properties of Spontaneous EPSCs and non‐NMDA Receptors in Rod Amacrine (AII) Cells in the Rat Retina , 2003, The Journal of physiology.

[26]  Mark Farrant,et al.  NMDA receptor subunits: diversity, development and disease , 2001, Current Opinion in Neurobiology.

[27]  P. Castillo,et al.  The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. , 2011, Journal of neurophysiology.

[28]  E. Marder Electrical synapses: Beyond speed and synchrony to computation , 1998, Current Biology.

[29]  J. Diamond,et al.  Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina , 2006, The Journal of comparative neurology.

[30]  M. Häusser,et al.  Intersynaptic diffusion of neurotransmitter. , 1997, Trends in neurosciences.

[31]  S. Massey,et al.  Dopamine-Stimulated Dephosphorylation of Connexin 36 Mediates AII Amacrine Cell Uncoupling , 2009, The Journal of Neuroscience.

[32]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[33]  R. W. Rodieck The First Steps in Seeing , 1998 .

[34]  B. Völgyi,et al.  Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina , 2004, The Journal of Neuroscience.

[35]  Robert F. Miller,et al.  N-methyl-D-aspartate receptors contribute to the baseline noise of retinal ganglion cells , 2003, Visual Neuroscience.

[36]  Henri Korn,et al.  Long-term potentiation of electrotonic coupling at mixed synapses , 1990, Nature.

[37]  E. Strettoi,et al.  Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina , 1992, The Journal of comparative neurology.

[38]  J. Deuchars,et al.  Role of Olivary Electrical Coupling in Cerebellar Motor Learning , 2008, Neuron.

[39]  R. Tuttle,et al.  Freeze‐fracture study of the large myelinated club ending synapse on the goldfish Mauthner cell: Special reference to the quantitative analysis of gap junctions , 1986, The Journal of comparative neurology.

[40]  K. Willecke,et al.  The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors , 2008, Proceedings of the National Academy of Sciences.

[41]  S. Massey,et al.  Antibody to calretinin stains AII amacrine cells in the rabbit retina: Double‐label and confocal analyses , 1999, The Journal of comparative neurology.

[42]  H. Wässle,et al.  AII Amacrine Cells Express L-Type Calcium Channels at Their Output Synapses , 2003, The Journal of Neuroscience.

[43]  S. Bloomfield,et al.  Light-induced modulation of coupling between AII amacrine cells in the rabbit retina , 1997, Visual Neuroscience.

[44]  R. Weiler,et al.  Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  W. Dubinsky,et al.  Regulation of Gap Junction Coupling Through the Neuronal Connexin Cx35 by Nitric Oxide and cGMP , 2006, Cell communication & adhesion.

[46]  J. Diamond,et al.  Sustained Ca2+ Entry Elicits Transient Postsynaptic Currents at a Retinal Ribbon Synapse , 2003, The Journal of Neuroscience.

[47]  S. Mills,et al.  Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network , 2007, Visual Neuroscience.

[48]  G. Burr,et al.  Connexin 35/36 is phosphorylated at regulatory sites in the retina , 2007, Visual Neuroscience.

[49]  Frances K Skinner,et al.  Distal gap junctions and active dendrites can tune network dynamics. , 2006, Journal of neurophysiology.

[50]  E. Hartveit,et al.  Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling , 2006, Nature Neuroscience.

[51]  R. Weiler,et al.  Protein Kinase A-mediated Phosphorylation of Connexin36 in Mouse Retina Results in Decreased Gap Junctional Communication between AII Amacrine Cells* , 2006, Journal of Biological Chemistry.

[52]  D. Pow,et al.  Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina , 2000, Neuroscience Letters.

[53]  J. Watkins,et al.  L-Glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes , 1984, Nature.

[54]  R. Colbran,et al.  Calcium/calmodulin-dependent protein kinase II and synaptic plasticity , 2004, Current Opinion in Neurobiology.

[55]  G. Burr,et al.  Protein kinase A mediates regulation of gap junctions containing connexin35 through a complex pathway. , 2005, Brain research. Molecular brain research.

[56]  D S Faber,et al.  Activity-dependent short-term enhancement of intercellular coupling , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  F. Rieke,et al.  Controlling the Gain of Rod-Mediated Signals in the Mammalian Retina , 2006, The Journal of Neuroscience.

[58]  D. Faber,et al.  Ca2+/calmodulin-dependent kinase II mediates simultaneous enhancement of gap-junctional conductance and glutamatergic transmission. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Antony W. Goodwin,et al.  ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN , 2010 .

[60]  E. Hartveit,et al.  Functional characteristics of non‐NMDA‐type ionotropic glutamate receptor channels in AII amacrine cells in rat retina , 2002, The Journal of physiology.

[61]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[62]  R. Colbran,et al.  Targeting of calcium/calmodulin-dependent protein kinase II. , 2004, The Biochemical journal.

[63]  Alcino J. Silva,et al.  Calmodulin-Kinases: Modulators of Neuronal Development and Plasticity , 2009, Neuron.

[64]  G. Maccaferri,et al.  Noradrenergic Modulation of Electrical Coupling in GABAergic Networks of the Hippocampus , 2008, The Journal of Neuroscience.

[65]  J. P. Huston,et al.  Stimulus complexity dependent memory impairment and changes in motor performance after deletion of the neuronal gap junction protein connexin36 in mice , 2005, Behavioural Brain Research.

[66]  S. Massey,et al.  Glutamate receptors at rod bipolar ribbon synapses in the rabbit retina , 2002, The Journal of comparative neurology.

[67]  E. Hartveit,et al.  AII (Rod) Amacrine Cells Form a Network of Electrically Coupled Interneurons in the Mammalian Retina , 2002, Neuron.

[68]  Alice Z Chuang,et al.  Photoreceptor Coupling Is Controlled by Connexin 35 Phosphorylation in Zebrafish Retina , 2009, The Journal of Neuroscience.