Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: evidence from sulphate evaporites in the ∼2.2–2.1 Gyr shallow‐marine Lucknow Formation, South Africa

Abstract Past oceanic sulphate concentration is important for understanding how the oceans’ redox state responded to atmospheric oxygen levels. The absence of extensive marine sulphate evaporites before ∼1.2 Gyr probably reflects low seawater sulphate and/or higher carbonate concentrations. Sulphate evaporites formed locally during the 2.22–2.06 Gyr Lomagundi positive δ13C excursion. However, the ∼2.2–2.1 Gyr Lucknow Formation, South Africa, provides the first direct evidence for seawater sulphate precipitation on a carbonate platform with open ocean access and limited terrestrial input. These marginal marine deposits contain evidence for evaporite molds, pseudomorphs after selenite gypsum, and solid inclusions of Ca‐sulphate in quartz. Carbon and sulphur isotope data match the global record and indicate a marine source of the evaporitic brines. The apparent precipitation of gypsum before halite requires ≥2.5 mm L−1 sulphate concentration, higher than current estimates for the Paleoproterozoic. During the Lomagundi event, which postdates the 2.32 Gyr initial rise in atmospheric oxygen, seawater sulphate concentration rose from Archean values of ≤200 μm L−1, but dropped subsequently because of higher pyrite burial rates and a lower oceanic redox state.

[1]  V. Niekerk,et al.  The origin of the Kheis Terrane and its relationship with the Archean Kaapvaal Craton and the Grenvillian Namaqua province in Southern Africa , 2009 .

[2]  A. Bekker,et al.  Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA , 2007 .

[3]  A. J. Kaufman,et al.  Carbon isotope record for the onset of the Lomagundi carbon isotope excursion in the Great Lakes area, North America , 2006 .

[4]  Juan Pablo Lacassie,et al.  Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean–Paleoproterozoic, South Africa) , 2006 .

[5]  J. Gutzmer,et al.  Links of organic carbon cycling and burial to depositional depth gradients and establishment of a snowball Earth at 2.3Ga. Evidence from the Timeball Hill Formation,Transvaal Supergroup, South Africa. , 2006 .

[6]  A. Bekker,et al.  Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen , 2005 .

[7]  A. J. Kaufman,et al.  Evidence for Paleoproterozoic cap carbonates in North America , 2005 .

[8]  H. Strauss,et al.  Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution , 2005 .

[9]  L. P. Knauth,et al.  Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution , 2005 .

[10]  A. Fallick,et al.  Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the δ13C excursion , 2005 .

[11]  Linda C. Kah,et al.  Low marine sulphate and protracted oxygenation of the Proterozoic biosphere , 2004, Nature.

[12]  H. Strauss,et al.  The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates , 2004 .

[13]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[14]  J. Grotzinger,et al.  Paleoproterozoic Stark Formation, Athapuscow Basin, Northwest Canada: Record of Cratonic-Scale Salinity Crisis , 2003 .

[15]  A. Bekker,et al.  A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: a record of the Kenorland breakup , 2003 .

[16]  A. Bekker Chemostratigraphy of Paleoproterozoic carbonate successions of the Wyoming Craton: tectonic forcing of biogeochemical change? , 2003 .

[17]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[18]  D. desmarais,et al.  Biogeochemical Cycles of Carbon and Sulfur , 2002 .

[19]  J. Gutzmer,et al.  Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic , 2002 .

[20]  M. Brasier,et al.  Did global tectonics drive early biosphere evolution? Carbon isotope record from 2.6 to 1.9 Ga carbonates of Western Australian basins , 2002 .

[21]  R. W. Ojakangas,et al.  Basin evolution of the Paleoproterozoic Karelian Supergroup of the Fennoscandian (Baltic) Shield , 2001 .

[22]  H. Strauss,et al.  The Sulfur Isotopic Composition of Phanerozoic Seawater Sulfate Based on Structurally Substituted Sulfate in Carbonates , 2001 .

[23]  A. J. Kaufman,et al.  Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: Implications for Coupled Climate Change and Carbon Cycling , 2001 .

[24]  B. Sreenivas Positive δ13C excursion in carbonate and organic fractions from the Paleoproterozoic Aravalli Supergroup, Northwestern India , 2001 .

[25]  R. Goldstein,et al.  Evaporites and siliciclastics of the Permian Nippewalla Group of Kansas, USA: a case for non‐marine deposition in saline lakes and saline pans , 2001 .

[26]  B. Schreiber,et al.  Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerrida basin, Western Australia: Origin and significance , 1999 .

[27]  P. Medvedev,et al.  Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite–stromatolite–dolomite–`red beds' association in a global context: a case for the world-wide signal enhanced by a local environment , 1999 .

[28]  B. Krapež,et al.  Sequence stratigraphy of the Palaeoproterozoic Nabberu Province of Western Australia , 1999 .

[29]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[30]  I. Buick,et al.  High-δ13C Paleoproterozoic carbonates from the Transvaal Supergroup, South Africa , 1998 .

[31]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[32]  S. Schütte,et al.  The Ongeluk basaltic andesite formation in Griqualand West, South Africa: submarine alteration in a 2222 Ma proterozoic sea , 1996 .

[33]  A. Fallick,et al.  A widespread positive ?13Ccarbanomaly at around 2.33?2.06 Ga on the Fennoscandian Shield: a paradox? , 1996 .

[34]  M. Sullivan,et al.  LATE ANHYDRITE CEMENTS MARK BASIN INVERSION - ISOTOPIC AND FORMATION WATER EVIDENCE, ROTLIEGEND SANDSTONE, NORTH-SEA , 1994 .

[35]  H. Strauss The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record , 1993 .

[36]  J. Kasting,et al.  New Constraints on Precambrian Ocean Composition , 1993, The Journal of Geology.

[37]  J. Cooper,et al.  Braided Fluvial to Marine Transition: The Basal Lower Cambrian Wood Canyon Formation, Southern Marble Mountains, Mojave Desert, California , 1991 .

[38]  Roger Buick,et al.  Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia , 1990 .

[39]  F. W. Chandler Diagenesis of sabkha-related, sulphate nodules in the early Proterozoic Gordon Lake formation, Ontario, Canada , 1988, Carbonates and Evaporites.

[40]  N. Beukes,et al.  New evidence for thrust faulting in Griqualand West, South Africa; implications for stratigraphy and the age of red beds , 1987 .

[41]  E. A. Wachter,et al.  Exchange of oxygen isotopes in carbon dioxide-phosporic acid systems , 1985 .

[42]  L. Hardie Evaporites; marine or non-marine? , 1984 .

[43]  E. M. Cameron Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in Precambrian oceans , 1983, Nature.

[44]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[45]  W. T. Holser Chapter 8. MINERALOGY OF EVAPORITES , 1979 .

[46]  R. G. Vos,et al.  Subtidal and intertidal clastic and carbonate sedimentation in a macrotidal environment: an example from the lower proterozoic of South Africa , 1977 .

[47]  B. Schreiber,et al.  New Observations on the Pleistocene Evaporites of Montallegro, Sicily and a Modern Analog , 1975 .

[48]  D. Bebout,et al.  Classification of Anhydrite -- A Practical Approach , 1969 .

[49]  H. Strauss 4 Ga of seawater evolution: Evidence from the sulfur isotopic composition of sulfate , 2004 .

[50]  V. Kovach,et al.  The U-Pb age of the fedorov sequence of the Aldan granulite-gneiss megacomplex, the Aldan shield , 2003 .

[51]  R. Armstrong,et al.  Geochronology of the Proterozoic Hartley Basalt formation, South Africa: constraints on the Kheis tectogenesis and the Kaapvaal Craton's earliest Wilson Cycle , 1998 .

[52]  J. Hoefs,et al.  Isotopic composition of two Precambrian stratiform barite deposits from the Indian shield , 1991 .

[53]  C. Gregor Chemical cycles in the evolution of the earth , 1988 .

[54]  D. Shearman,et al.  Evaporites of Coastal Sabkhas , 1987 .

[55]  Jean Marie Hemzacek Replaced evaporites and the sulfur isotope age curve of the Precambrian , 1987 .

[56]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[57]  D. Shearman Section 2 EVAPORITES OF COASTAL SABKHAS , 1978 .