Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy.

We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton.

[1]  J. Knoester,et al.  Decoherence of excitons in multichromophore systems: thermal line broadening and destruction of superradiant emission. , 2005, Physical review letters.

[2]  N. F. Hulst,et al.  Single-molecule pump-probe experiments reveal variations in ultrafast energy redistribution. , 2005, The Journal of chemical physics.

[3]  D. Reinhoudt,et al.  Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. , 2005, Physical review letters.

[4]  D. Reinhoudt,et al.  Single molecule photobleaching probes the exciton wave function in a multichromophoric system. , 2004, Physical Review Letters.

[5]  P. Bordat,et al.  Coherent electronic coupling versus localization in individual molecular dimers. , 2004, Physical review letters.

[6]  J. Knoester,et al.  Temperature dependent fluorescence in disordered Frenkel chains: interplay of equilibration and local band-edge level structure. , 2003, Physical review letters.

[7]  Zoltán G. Soos,et al.  Optical absorption spectra of the Holstein molecular crystal for weak and intermediate electronic coupling , 2002 .

[8]  F. Spano Absorption and emission in oligo-phenylene vinylene nanoaggregates: The role of disorder and structural defects , 2002 .

[9]  G. Fleming,et al.  Ultrafast exciton dynamics of J-aggregates in room temperature solution studied by third-order nonlinear optical spectroscopy and numerical simulation based on exciton theory , 2001 .

[10]  V. Sundström,et al.  Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. , 2001, Physical review letters.

[11]  D. Wiersma,et al.  Exciton Dynamics in LH1 and LH2 of Rhodopseudomonas Acidophila and Rhodobium Marinum Probed with Accumulated Photon Echo and Pump-Probe Measurements , 2000 .

[12]  S. Mukamel,et al.  Superradiance coherence sizes in single-molecule spectroscopy of LH2 antenna complexes , 1999 .

[13]  N. Johnson,et al.  ENTANGLED BELL AND GREENBERGER-HORNE-ZEILINGER STATES OF EXCITONS IN COUPLED QUANTUM DOTS , 1999, cond-mat/9901201.

[14]  R. H. Friend,et al.  Charge separation in localized and delocalized electronic states in polymeric semiconductors , 1998, Nature.

[15]  S. Mukamel,et al.  Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes , 1997 .

[16]  S. Mukamel,et al.  Collective coordinates for nuclear spectral densities in energy transfer and femtosecond spectroscopy of molecular aggregates , 1996 .

[17]  H. Fidder,et al.  Dynamics of Frenkel excitons in disordered molecular aggregates , 1991 .

[18]  Spanò,et al.  Temperature-dependent superradiant decay of excitons in small aggregates. , 1990, Physical review letters.

[19]  EDWIN E. JELLEY,et al.  Spectral Absorption and Fluorescence of Dyes in the Molecular State , 1936, Nature.

[20]  Shinji Watanabe,et al.  Nature (London , 1975 .

[21]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .

[22]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .