Order estimation for linear time-invariant systems using frequency domain identification methods

A two-step coarse-fine order estimation technique is proposed to determine the order of the numerator and the denominator polynomials of rational transfer function models for single-input/single-output (SISO) linear time-invariant systems. The coarse order estimation is based on rank detection by verification of the stochastic significance of the singular values of a linearized problem. The fine order estimation is based on a statistical analysis of the maximum likelihood cost function. The method is tested on measurements of low-(4 zeros, 6 poles) and high- (58 poles, 58 zeros) order systems.

[1]  David R. Brillinger,et al.  Time Series , 2018, Randomization, Bootstrap and Monte Carlo Methods in Biology.

[2]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[3]  Yves Rolain,et al.  Maximum likelihood estimation of errors-in-variables models using a sample covariance matrix obtained from small data sets , 1997 .

[4]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[5]  H. Akçay,et al.  An efficient frequency domain state-space identification algorithm: robustness and stochastic analysis , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[6]  Rik Pintelon,et al.  Identification of Linear Systems: A Practical Guideline to Accurate Modeling , 1991 .

[7]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[8]  H. Akaike A new look at the statistical model identification , 1974 .

[9]  G. Forsythe Generation and Use of Orthogonal Polynomials for Data-Fitting with a Digital Computer , 1957 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Y. Rolain Generating Robust Starting Values for Frequency Domain Transfer Function Estimation. , 1996 .

[12]  Lennart Ljung Some results on identifying linear systems using frequency domain data , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[13]  Patrick Guillaume,et al.  Measurement of noise (cross-) power spectra for frequency-domain system identification purposes: large-sample results , 1996 .

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  E. C. Levy Complex-curve fitting , 1959, IRE Transactions on Automatic Control.

[16]  J. Schoukens,et al.  Identification of linear systems in the presence of nonlinear distortions. A frequency domain approach. I. Non-parametric identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[17]  J. Schoukens,et al.  Modeling the noise influence on the Fourier coefficients after a discrete Fourier transform , 1986, IEEE Transactions on Instrumentation and Measurement.

[18]  Yves Rolain,et al.  Best conditioned parametric identification of transfer function models in the frequency domain , 1995, IEEE Trans. Autom. Control..

[19]  Gerd Vandersteen,et al.  General framework for asymptotic properties of generalized weighted nonlinear least-squares estimators with deterministic and stochastic weighting , 1996, IEEE Trans. Autom. Control..

[20]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[21]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[22]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..