Fully-Integrated Heterogeneous DML Transmitters for High-Performance Computing

Optical connectivity, which has been widely deployed in today's datacenters and high-performance computing (HPC) systems, is a disruptive technological revolution to the IT industry in the new Millennium. In our journey to debut an Exascale supercomputer, a completely new computing concept, called memory-driven computing, was innovated recently. This new computing architecture brings challenges and opportunities for novel optical interconnect solutions. Here, we first discuss our strategy to develop appropriate optical link solutions for different data traffic scenarios in memory-driven HPCs. Then, we present detailed review on recent work to demonstrate fully photonics-electronics-integrated single- and multi-wavelength directly modulated laser (DML) transmitters on silicon for the first time. Compact heterogeneous microring lasers and laser arrays were fabricated as photonic engines to work with a customized complementary metal-oxide semiconductor (CMOS) driver circuit. Microring lasers based on conventional quantum well and new quantum dot lasing medium were compared in the experiment. Thermal shunt and MOS capacitor structures were integrated into the lasers for effective thermal management and ultra low-energy tuning. It enables a controllable dense wavelength division multiplexing (DWDM) link architecture in an HPC environment. An equivalent microring laser circuit model was constructed to allow photonics-electronics co-simulation. Equalization functionality in the CMOS driver circuit proved to be critical to achieve up to 14 Gb/s direct modulation with 6 dB extinction ratio. Finally, the on-going and future work is discussed towards more robust, higher speed, and more energy efficient DML transmitters.

[1]  Marc Sorel,et al.  Unidirectional bistability in semiconductor waveguide ring lasers , 2002 .

[2]  Kimberly Keeton,et al.  The OpenFAM API: A Programming Model for Disaggregated Persistent Memory , 2018, OpenSHMEM.

[3]  Di Liang,et al.  Robust hybrid quantum dot laser for integrated silicon photonics. , 2016, Optics express.

[4]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[5]  S. Srinivasan,et al.  Optical Injection-locked High-speed Heterogeneous Quantum-dot Microring Lasers , 2019, 45th European Conference on Optical Communication (ECOC 2019).

[6]  Yuede Yang,et al.  Hybrid Deformed-Ring AlGaInAs/Si Microlasers With Stable Unidirectional Emission , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Di Liang,et al.  A tunable hybrid III-V-on-Si MOS microring resonator with negligible tuning power consumption , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[8]  Gabriel M. Rebeiz,et al.  Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. , 2018, Optics express.

[9]  Azita Emami-Neyestanak,et al.  A Modelling and Nonlinear Equalization Technique for a 20 Gb/s 0.77 pJ/b VCSEL Transmitter in 32 nm SOI CMOS , 2016, IEEE Journal of Solid-State Circuits.

[10]  Di Liang,et al.  Teardrop Reflector-Assisted Unidirectional Hybrid Silicon Microring Lasers , 2012, IEEE Photonics Technology Letters.

[11]  L. O'Faolain,et al.  Reduced surface sidewall recombination and diffusion in quantum-dot lasers , 2006, IEEE Photonics Technology Letters.

[12]  Takaaki Kakitsuka,et al.  Low-operating-energy directly modulated lasers for short-distance optical interconnects , 2018, Advances in Optics and Photonics.

[13]  Masayuki Fujita,et al.  Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor , 1999 .

[14]  Levon V. Asryan,et al.  Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser , 1996 .

[15]  Marco Fiorentino,et al.  A comb laser-driven DWDM silicon photonic transmitter based on microring modulators. , 2015, Optics express.

[16]  J. Bowers,et al.  Quantum dot microcavity lasers on silicon substrates , 2019, Future Directions in Silicon Photonics.

[17]  Frederic Boeuf,et al.  Efficient low-loss InGaAsP/Si hybrid MOS optical modulator , 2017, Nature Photonics.

[18]  John E. Bowers,et al.  Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si , 2018 .

[19]  J. Bowers,et al.  Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability , 2018, Photonics Research.

[20]  D. Miller,et al.  Optical interconnects to electronic chips. , 2010, Applied optics.

[21]  Di Liang,et al.  On-Chip Hybrid Silicon Quantum Dot Comb Laser with 14 Error-Free Channels , 2018, 2018 IEEE International Semiconductor Laser Conference (ISLC).

[22]  Mitsuru Sugawara,et al.  Quantum dot devices: Handling the heat , 2009 .

[23]  J. Bowers,et al.  Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. , 2007, Optics express.

[24]  Wim Bogaerts,et al.  Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits. , 2005, Optics express.

[25]  Alwyn J. Seeds,et al.  Semiconductor III–V lasers monolithically grown on Si substrates , 2012 .

[26]  John P. Hohimer,et al.  Unidirectional semiconductor ring lasers with racetrack cavities , 1993 .

[27]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[28]  L. Di Cioccio,et al.  A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks , 2008, IEEE Photonics Technology Letters.

[29]  Di Liang,et al.  High-speed 1310 nm Hybrid Silicon Quantum Dot Photodiodes with Ultra-low Dark Current , 2018, 2018 76th Device Research Conference (DRC).

[30]  Jung Ho Ahn,et al.  A Nanophotonic Interconnect for High-Performance Many-Core Computation , 2008, 2008 16th IEEE Symposium on High Performance Interconnects.

[31]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[32]  Richard K. Chang,et al.  Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission , 2004 .

[33]  D. Deppe,et al.  Low-threshold oxide-confined 1.3-μm quantum-dot laser , 2000, IEEE Photonics Technology Letters.

[34]  M Laemmlin,et al.  Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. , 2007, Optics express.

[35]  A. Zhukov,et al.  Whispering-gallery mode microcavity quantum-dot lasers , 2014 .

[36]  Zeyu Zhang,et al.  1.3 μm Submilliamp Threshold Quantum Dot Micro-lasers on Si , 2017 .

[37]  Kunzhi Yu,et al.  A 25Gbps low-voltage waveguide Si-Ge avalanche photodiode , 2016, CLEO 2016.

[38]  L. Di Cioccio,et al.  Thermal Characterization of Electrically Injected Thin-Film InGaAsP Microdisk Lasers on Si , 2007, Journal of Lightwave Technology.

[39]  Richard Jones,et al.  Heterogeneously Integrated InP\/Silicon Photonics: Fabricating Fully Functional Transceivers , 2019, IEEE Nanotechnology Magazine.

[40]  Jung Ho Ahn,et al.  Optical high radix switch design , 2012, IEEE Micro.

[41]  David T. D. Childs,et al.  1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density , 2004 .

[42]  Di Liang,et al.  Error-Free Operation in a Hybrid-Silicon Quantum Dot Comb Laser , 2018, IEEE Photonics Technology Letters.

[43]  Andreas Beling,et al.  Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 μm light detection , 2008 .

[44]  M. Hopkinson,et al.  Systematic Study of the Effects of Modulation P-Doping on 1.3μM InAs/GaAs Dot-in-Well Lasers , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[45]  Chen Sun,et al.  Addressing link-level design tradeoffs for integrated photonic interconnects , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[46]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[47]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[48]  Hiroshi Fukuda,et al.  Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator , 2017, Nature Photonics.

[49]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[50]  Philippe Regreny,et al.  Improved design of an InP-based microdisk laser heterogeneously integrated with SOI , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[51]  Cheng Li,et al.  A 14 Gb/s Directly Modulated Hybrid Microring Laser Transmitter , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[52]  Ashkan Roshan-Zamir,et al.  A Directly Modulated Quantum Dot Microring Laser Transmitter with Integrated CMOS Driver , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[53]  M. Yamaguchi,et al.  Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[54]  Di Liang,et al.  Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. , 2009, Optics express.

[55]  E. Maniloff,et al.  400G and Beyond: Coherent Evolution to High-Capacity Inter Data Center Links , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[56]  Di Liang,et al.  Hybrid quantum-dot microring laser on silicon , 2019, Optica.

[57]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[58]  Sharad Singhal,et al.  Adapting to Thrive in a New Economy of Memory Abundance , 2015, Computer.

[59]  Yasuhiko Arakawa,et al.  Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C. , 2016, Optics express.

[60]  John P. Hohimer,et al.  Unidirectional operation in a semiconductor ring diode laser , 1993, Optical Society of America Annual Meeting.

[61]  Drew Hanser,et al.  Systems and technology for production-scale molecular beam epitaxy , 2013 .

[62]  Cheng Li,et al.  A Fully-integrated Multi-λ Hybrid DML Transmitter , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[63]  Di Liang,et al.  Thermal Management of Hybrid Silicon Ring Lasers for High Temperature Operation , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[64]  T. Tsuchizawa,et al.  239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on high-thermal-conductivity SiC , 2019, 45th European Conference on Optical Communication (ECOC 2019).

[65]  Thierry Baron,et al.  O-band InAs/GaAs quantum dot laser monolithically integrated on exact (0 0 1) Si substrate , 2019, Journal of Crystal Growth.

[66]  Richard A. Soref,et al.  Carrier-induced change in refractive index of InP, GaAs and InGaAsP , 1990 .

[67]  John E. Bowers,et al.  Perspective: The future of quantum dot photonic integrated circuits , 2018 .

[68]  Long Chen,et al.  Silicon Photonics in Optical Coherent Systems , 2018, Proceedings of the IEEE.

[69]  Heming Huang,et al.  Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon , 2018, Journal of the Optical Society of America B.

[70]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[71]  M. Maksimov,et al.  Device characteristics of long-wavelength lasers based on self-organized quantum dots , 2012 .

[72]  Dan Dalacu,et al.  External cavity InAs∕InP quantum dot laser with a tuning range of 166nm , 2006 .

[73]  Yasuhiko Arakawa,et al.  1.3 µm InAs/GaAs quantum dot lasers on SOI waveguide structures , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[75]  M. Smit,et al.  A fast low-power optical memory based on coupled micro-ring lasers , 2004, Nature.

[76]  Jeffrey A. Kash,et al.  Optical interconnects for high performance computing , 2012, 2009 Asia Communications and Photonics conference and Exhibition (ACP).

[77]  S. Matsuo Heterogeneously integrated III–V photonic devices on Si , 2019, Future Directions in Silicon Photonics.

[78]  R. G. Beausoleil,et al.  Optimization of Hybrid Silicon Microring Lasers , 2011, IEEE Photonics Journal.

[79]  Takuro Fujii,et al.  Directly Modulated DFB Laser on SiO$_{\bf 2}$ /Si Substrate for Datacenter Networks , 2015, Journal of Lightwave Technology.

[80]  M. Sorel,et al.  Unidirectional Bistability in AlGaInAs Microring and Microdisk Semiconductor Lasers , 2009, IEEE Photonics Technology Letters.

[81]  Cheng Li,et al.  Hybrid integrated DWDM silicon photonic transceiver with self-adaptive CMOS circuits , 2013, 2013 Optical Interconnects Conference.

[82]  Geert Morthier,et al.  An ultra-small, low-power all-optical flip-flop memory on a silicon chip , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[83]  D Van Thourhout,et al.  Unidirectional III-V microdisk lasers heterogeneously integrated on SOI. , 2013, Optics express.

[84]  Ying-Hao Kuo,et al.  A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector. , 2007, Optics express.

[85]  Y. Arakawa,et al.  High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001). , 2019, Optics express.

[86]  Siyuan Yu,et al.  Analysis of Dynamic Switching Behavior of Bistable Semiconductor Ring Lasers Triggered by Resonant Optical Pulse Injection , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[87]  Owers,et al.  Directly modulated 1 . 3 μ m quantum dot lasers epitaxially grown on silicon , 2018 .

[88]  G. Kurczveil,et al.  Integrated finely tunable microring laser on silicon , 2016, Nature Photonics.

[89]  Amir Arbabi,et al.  Grating integrated single mode microring laser. , 2015, Optics express.

[90]  Yong-Zhen Huang,et al.  Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array , 2015, IEEE Journal of Quantum Electronics.

[91]  Kouji Nakahara,et al.  Direct Modulation at 56 and 50 Gb/s of 1.3- $\mu $ m InGaAlAs Ridge-Shaped-BH DFB Lasers , 2015, IEEE Photonics Technology Letters.