PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys

[1]  J. Allison,et al.  The effects of heat treatment on the response of WE43 Mg alloy: crystal plasticity finite element simulation and SEM-DIC experiment , 2021, International Journal of Plasticity.

[2]  W. Polkowski Crystal Plasticity , 2021, Crystals.

[3]  D. McDowell,et al.  Effects of algorithmic simulation parameters on the prediction of extreme value fatigue indicator parameters in duplex Ti-6Al-4V , 2020 .

[4]  F. Dunne,et al.  Cyclic plasticity and thermomechanical alleviation in titanium alloys , 2020 .

[5]  Somnath Ghosh,et al.  Uncertainty-quantified parametrically homogenized constitutive models (UQ-PHCMs) for dual-phase α/β titanium alloys , 2020, npj Computational Materials.

[6]  W. Ludwig,et al.  Quantifying microscale drivers for fatigue failure via coupled synchrotron X-ray characterization and simulations , 2020, Nature Communications.

[7]  M. Sangid,et al.  Examining metrics for fatigue life predictions of additively manufactured IN718 via crystal plasticity modeling including the role of simulation volume and microstructural constraints , 2020 .

[8]  D. McDowell,et al.  Prediction of maximum fatigue indicator parameters for duplex Ti–6Al–4V using extreme value theory , 2020 .

[9]  D. McDowell,et al.  Microstructure-sensitive computational multiaxial fatigue of Al 7075-T6 and duplex Ti-6Al-4V , 2020 .

[10]  J. Allison,et al.  Multiscale modeling of twinning and detwinning behavior of HCP polycrystals , 2020 .

[11]  K. Thornton,et al.  PRISMS-PF: A general framework for phase-field modeling with a matrix-free finite element method , 2020, npj Computational Materials.

[12]  S. Fintová,et al.  Fatigue behavior of AW7075 aluminum alloy in ultra-high cycle fatigue region , 2020 .

[13]  D. McDowell,et al.  Microstructure-Sensitive Computational Estimates of Driving Forces for Surface Versus Subsurface Fatigue Crack Formation in Duplex Ti-6Al-4V and Al 7075-T6 , 2020, JOM.

[14]  Veera Sundararaghavan,et al.  PRISMS-Plasticity: An open-source crystal plasticity finite element software , 2019, Computational Materials Science.

[15]  F. Dunne,et al.  The dislocation configurational energy density in discrete dislocation plasticity , 2019, Journal of the Mechanics and Physics of Solids.

[16]  Somnath Ghosh,et al.  Two-way multi-scaling for predicting fatigue crack nucleation in titanium alloys using parametrically homogenized constitutive models , 2019, Journal of the Mechanics and Physics of Solids.

[17]  Vikram Gavini,et al.  DFT-FE - A massively parallel adaptive finite-element code for large-scale density functional theory calculations , 2019, Comput. Phys. Commun..

[18]  Anton Van der Ven,et al.  PRISMS: An Integrated, Open-Source Framework for Accelerating Predictive Structural Materials Science , 2018, JOM.

[19]  J. E. Allison,et al.  PRISMS: An Integrated, Open-Source Framework for Accelerating Predictive Structural Materials Science , 2018, JOM.

[20]  Xianghui Xiao,et al.  3D time-resolved observations of corrosion and corrosion-fatigue crack initiation and growth in peak-aged Al 7075 using synchrotron X-ray tomography , 2018, Corrosion Science.

[21]  Emil M. Constantinescu,et al.  PETSc/TS: A Modern Scalable ODE/DAE Solver Library , 2018, 1806.01437.

[22]  B. Skallerud,et al.  Crystal plasticity modeling of microstructure influence on fatigue crack initiation in extruded Al6082-T6 with surface irregularities , 2018, International Journal of Fatigue.

[23]  F. Dunne,et al.  Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? , 2018 .

[24]  P. Xia,et al.  Goss texture intensity effect on fatigue crack propagation resistance in an Al-Cu-Mg alloy , 2018 .

[25]  Peter Kenesei,et al.  Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy , 2017 .

[26]  McLean P. Echlin,et al.  On slip initiation in equiaxed α/β Ti-6Al-4V , 2017 .

[27]  D. McDowell,et al.  Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6 , 2017 .

[28]  D. McDowell,et al.  Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes , 2016 .

[29]  H. V. Jagadish,et al.  The Materials Commons: A Collaboration Platform and Information Repository for the Global Materials Community , 2016 .

[30]  David L. McDowell,et al.  Failure of metals II: Fatigue , 2016 .

[31]  David L. McDowell,et al.  Microstructure and mesh sensitivities of mesoscale surrogate driving force measures for transgranular fatigue cracks in polycrystals , 2015 .

[32]  David L. McDowell,et al.  Recent developments in assessing microstructure-sensitive early stage fatigue of polycrystals , 2014 .

[33]  F. Dunne Fatigue crack nucleation: Mechanistic modelling across the length scales , 2014 .

[34]  M. Groeber,et al.  DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D , 2014, Integrating Materials and Manufacturing Innovation.

[35]  David L. McDowell,et al.  Mesoscale modeling of microstructurally small fatigue cracks in metallic polycrystals , 2014 .

[36]  N. Salajegheh Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions , 2014 .

[37]  D. McDowell,et al.  Microstructure-sensitive HCF and VHCF simulations , 2013 .

[38]  W. Curtin,et al.  Discrete dislocation modeling of fracture in plastically anisotropic metals , 2013 .

[39]  David L. McDowell,et al.  Assessment of small fatigue crack growth driving forces in single crystals with and without slip bands , 2012, International Journal of Fracture.

[40]  David L. McDowell,et al.  Simulated microstructure-sensitive extreme value probabilities for high cycle fatigue of duplex Ti–6Al–4V , 2011 .

[41]  Catherine Mabru,et al.  Influence of surface treatments on fatigue life of Al 7010 alloy , 2010 .

[42]  D. McDowell,et al.  Microstructure-sensitive computational modeling of fatigue crack formation , 2010 .

[43]  C. Przybyla Microstructure-sensitive extreme value probabilities of fatigue in advanced engineering alloys , 2010 .

[44]  D. McDowell,et al.  Microstructure-sensitive modeling of high cycle fatigue , 2010 .

[45]  D. McDowell,et al.  Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100 , 2010 .

[46]  Farrokh Mistree,et al.  Integrated Design of Multiscale, Multifunctional Materials and Products , 2009 .

[47]  J. M. Larsen,et al.  Microstructural Influences on Very-High-Cycle Fatigue-Crack Initiation in Ti-6246 , 2008 .

[48]  Z. G. Wang,et al.  Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V , 2008 .

[49]  David L. McDowell,et al.  Simulation-based strategies for microstructure-sensitive fatigue modeling , 2007 .

[50]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[51]  K. Chandran,et al.  Duality of the S-N fatigue curve caused by competing failure modes in a titanium alloy and the role of Poisson defect statistics , 2005 .

[52]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[53]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[54]  J. Angus Extreme Value Theory in Engineering , 1990 .

[55]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[56]  K. J. Miller,et al.  A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions , 1973 .

[57]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[58]  Richard Barnett,et al.  Fatigue , 1896, The Lancet.

[59]  F. Dunne,et al.  Microstructural fracture mechanics: Stored energy density at fatigue cracks , 2021 .

[60]  M. Sangid,et al.  Comparative assessment of backstress models using high-energy X-ray diffraction microscopy experiments and crystal plasticity finite element simulations , 2021 .

[61]  G. Voyiadjis,et al.  Nonlocal crystal plasticity , 2019, Size Effects in Plasticity.

[62]  D. McDowell,et al.  Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities , 2016 .

[63]  D. McDowell,et al.  Microstructure-sensitive extreme-value probabilities of high-cycle fatigue for surface vs. subsurface crack formation in duplex Ti–6Al–4V , 2012 .

[64]  Huseyin Sehitoglu,et al.  A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals , 2011 .

[65]  D. McDowell,et al.  Polycrystal orientation distribution effects on microslip in high cycle fatigue , 2003 .

[66]  David L. McDowell,et al.  Stress state dependence of cyclic ratchetting behavior of two rail steels , 1995 .

[67]  Nobutada Ohno,et al.  Kinematic hardening rules with critical state of dynamic recovery, part II: Application to experiments of ratchetting behavior , 1993 .

[68]  N. Ohno,et al.  Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior , 1993 .

[69]  C. R. Mischke,et al.  Prediction of Stochastic Endurance Strength , 1987 .

[70]  A. Party Some theoretical principles , 1964 .