Analysis and numerical solution of nonlinear Volterra partial integrodifferential equations modeling swelling porous materials

A nonlinear Volterra partial integrodifferential equation (VPIDE), derived using hybrid mixture theory and used to model swelling porous materials, is analyzed and solved numerically. The model application is an immersed porous material imbibing fluid through a cylinder’s exterior boundary. A poignant example comes from the pharmaceutical industry where controlled release, drugdelivery systems are comprised of materials that permit nearly constant drug concentration profiles. In the considered application the release is controlled by the viscoelastic properties of a porous polymer network that swells when immersed in stomach fluid, consequently increasing the pore sizes and allowing the drug to escape. The VPIDE can be viewed as a combination of a non-linear diffusion equation and a constitutive equation modeling the viscoelastic effects. The viscoelastic model is expressed as an integral equation, thus adding an integral term to the non-linear partial differential equation. While this integral term poses both theoretical and numerical challenges, it provides fertile ground for interpretation and analysis. Analysis of the VPIDE includes an existence and uniqueness proof which

[1]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[2]  J. Siepmann,et al.  Mathematical modeling of drug delivery. , 2008, International journal of pharmaceutics.

[3]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[4]  Andrew B. White,et al.  Sharp fronts due to diffusion and viscoelastic relaxation in polymers , 1991 .

[5]  A. Cemal Eringen,et al.  A continuum theory of swelling porous elastic soils , 1994 .

[6]  Kellen Petersen August Real Analysis , 2009 .

[7]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[8]  Paul Garabedian,et al.  Lectures on partial differential equations , 1964 .

[9]  John H. Cushman,et al.  Macroscale Thermodynamics and the Chemical Potential for Swelling Porous Media , 1997 .

[10]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[11]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[12]  Steven A. Orszag,et al.  Comparison of Pseudospectral and Spectral Approximation , 1972 .

[13]  P. F. Low,et al.  The swelling of clay: II. Montmorillonites. , 1980 .

[14]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[15]  Hermann Brunner,et al.  Runge-Kutta theory for Volterra integral equations of the second kind , 1982 .

[16]  S. Kiil,et al.  Controlled drug delivery from swellable hydroxypropylmethylcellulose matrices: model-based analysis of observed radial front movements. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[17]  L. Trefethen,et al.  An Instability Phenomenon in Spectral Methods , 1987 .

[18]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[19]  J. Rigelsford Handbook of Pharmaceutical Controlled release Technology , 2002 .

[20]  T. Koizumi,et al.  Rate of release of medicaments from ointment bases containing drugs in suspension. , 1975, Chemical & pharmaceutical bulletin.

[21]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[22]  R. M. Bowen,et al.  Incompressible porous media models by use of the theory of mixtures , 1980 .

[23]  L. Bennethum Multiscale, hybrid mixture theory for swelling systems with interfaces , 1994 .

[24]  John H. Cushman,et al.  Multiscale fluid transport theory for swelling biopolymers , 2003 .

[25]  Kristian Sandberg,et al.  The EPS method: A new method for constructing pseudospectral derivative operators , 2011, J. Comput. Phys..

[26]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[27]  Multiphase transport based on compact distributions , 1985 .

[28]  D. Whiffen Thermodynamics , 1973, Nature.

[29]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[30]  Kamyar Haghighi,et al.  Effect of viscoelastic relaxation on moisture transport in foods. Part I: Solution of general transport equation , 2004, Journal of mathematical biology.

[31]  A. Polyanin,et al.  Handbook of Nonlinear Partial Differential Equations , 2003 .

[32]  N A Peppas,et al.  Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). , 2001, Advanced drug delivery reviews.

[33]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[34]  J. Siepmann,et al.  HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics , 1999, Pharmaceutical Research.

[35]  Ingo Müller,et al.  Molecular Extended Thermodynamics , 1993 .

[36]  Anders Axelsson,et al.  A model for the drug release from a polymer matrix tablet--effects of swelling and dissolution. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[37]  Andrei D. Polyanin,et al.  Polyanin, A. D. and Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations , Chapman & Hall/CRC, Boca , 2004 .

[38]  Mario Grassi,et al.  Mathematical modelling and controlled drug delivery: matrix systems. , 2005, Current drug delivery.

[39]  Lynn S. Bennethum,et al.  On the derivation of the transport equation for swelling porous materials with finite deformation , 2006 .

[40]  J. A. Boure TWO-PHASE FLOW MODELS: THE CLOSURE ISSUE , 1987 .

[41]  F. Hoog,et al.  Implicit Runge-Kutta methods for second kind Volterra integral equations , 1974 .

[42]  I. M. Michael EIGENFUNCTION EXPANSIONS ASSOCIATED WITH PARTIAL DIFFERENTIAL EQUATIONS , 1966 .

[43]  John H. Cushman,et al.  On unifying the concepts of scale, instrumentation, and stochastics in the development of multiphase transport theory , 1984 .

[44]  E. Tadmor The exponential accuracy of Fourier and Chebyshev differencing methods , 1986 .

[45]  Noreen L. Thomas,et al.  A theory of case II diffusion , 1982 .

[46]  Charles E. Carraher,et al.  Applied polymer science : 21st century , 2000 .

[47]  Bengt Fornberg,et al.  A Pseudospectral Approach for Polar and Spherical Geometries , 1995, SIAM J. Sci. Comput..

[48]  E. C. Titchmarsh Eigenfunction Expansions Associated with Partial Differential Equations , 1953 .

[49]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[50]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[51]  E. Russo,et al.  Fast Runge–Kutta methods for nonlinear convolution systems of Volterra integral equations , 2007 .

[52]  N. Peppas,et al.  Modeling of drug release from swellable polymers. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[53]  J. Siepmann,et al.  Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). , 2001 .

[54]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[55]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[56]  Dan Givoli,et al.  Time-stepping schemes for systems of Volterra integro-differential equations , 2001 .

[57]  J. L. Duda,et al.  A Deborah number for diffusion in polymer‐solvent systems , 1975 .

[58]  Craig T Simmons,et al.  The compleat Darcy: New lessons learned from the first English translation of les fontaines publiques de la Ville de Dijon , 2005, Ground water.

[59]  L. Bennethum,et al.  Three Pressures in Porous Media , 2004 .

[60]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[61]  P. Flory Principles of polymer chemistry , 1953 .

[62]  John H. Cushman,et al.  Multiscale, hybrid mixture theory for swelling systems—I: balance laws , 1996 .

[63]  Ivan P. Gavrilyuk,et al.  Collocation methods for Volterra integral and related functional equations , 2006, Math. Comput..

[64]  J. H. Cushman,et al.  Two-scale, three-phase theory for swelling drug delivery systems. Part II: flow and transport models. , 2008, Journal of pharmaceutical sciences.

[65]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[66]  Martin R. Okos,et al.  Moisture transport in shrinking gels during saturated drying , 1997 .

[67]  T. Higuchi,et al.  Physical Chemical analysis of Percutaneous Absorption Process from Creams and Ointments , 1960 .

[68]  John H. Cushman,et al.  Effect of viscoelastic relaxation on moisture transport in foods. Part II: Sorption and drying of soybeans , 2004, Journal of mathematical biology.

[69]  John H. Cushman,et al.  Multiscale flow and deformation in hydrophilic swelling porous media , 1996 .

[70]  J. H. Cushman,et al.  Two-scale, three-phase theory for swelling drug delivery systems. Part I: constitutive theory. , 2008, Journal of pharmaceutical sciences.

[71]  Mark H. Holmes,et al.  Introduction to the Foundations of Applied Mathematics , 2009, Texts in Applied Mathematics.

[72]  Ronald A. DeVore,et al.  The averaging lemma , 2000 .

[73]  M. Reiner,et al.  The Deborah Number , 1964 .

[74]  Martin R. Okos,et al.  On multicomponent, multiphase thermomechanics with interfaces , 1994 .