A stable meshfree method for fully coupled flow-deformation analysis of saturated porous media

Abstract A fully coupled meshfree algorithm is proposed for numerical analysis of Biot’s formulation. Spatial discretization of the governing equations is presented using the Radial Point Interpolation Method (RPIM). Temporal discretization is achieved based on a novel three-point approximation technique with a variable time step, which has second order accuracy and avoids spurious ripple effects observed in the conventional two-point Crank Nicolson technique. Application of the model is demonstrated using several numerical examples with analytical or semi-analytical solutions. It is shown that the model proposed is effective in simulating the coupled flow deformation behaviour in fluid saturated porous media with good accuracy and stability irrespective of the magnitude of the time step adopted.

[1]  Qingwei Ma,et al.  Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems , 2005 .

[2]  G. Y. Li,et al.  THE UPPER BOUND PROPERTY FOR SOLID MECHANICS OF THE LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD (LC-RPIM) , 2007 .

[3]  L. Libersky,et al.  High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response , 1993 .

[4]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[5]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[6]  Satya N. Atluri,et al.  MESHLESS LOCAL PETROV-GALERKIN (MLPG) METHOD FOR CONVECTION DIFFUSION PROBLEMS , 2000 .

[7]  Wing Kam Liu,et al.  Multiresolution reproducing kernel particle method for computational fluid dynamics , 1997 .

[8]  Guirong Liu A GENERALIZED GRADIENT SMOOTHING TECHNIQUE AND THE SMOOTHED BILINEAR FORM FOR GALERKIN FORMULATION OF A WIDE CLASS OF COMPUTATIONAL METHODS , 2008 .

[9]  Robert L. Schiffman,et al.  An Analysis of Consolidation Theories , 1969 .

[10]  Braja M. Das,et al.  Advanced Soil Mechanics , 2019 .

[11]  Guirong Liu ON G SPACE THEORY , 2009 .

[12]  Ping Lin,et al.  Numerical analysis of Biot's consolidation process by radial point interpolation method , 2002 .

[13]  G. Yagawa,et al.  Free mesh method: A new meshless finite element method , 1996 .

[14]  Genki Yagawa,et al.  Node‐by‐node parallel finite elements: a virtually meshless method , 2004 .

[15]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[16]  Wing Kam Liu,et al.  MESHLESS METHODS FOR SHEAR-DEFORMABLE BEAMS AND PLATES , 1998 .

[17]  A. P. S. Selvadurai,et al.  A transient pressure pulse method for the mesurement of permeability of a cement grout , 1997 .

[18]  Satya N. Atluri,et al.  Meshless Local Petrov-Galerkin Method for Heat Conduction Problem in an Anisotropic Medium , 2004 .

[19]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[20]  Guirong Liu,et al.  A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method , 2009 .

[21]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[22]  Nasser Khalili,et al.  A three‐point time discretization technique for parabolic partial differential equations , 2011 .

[23]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[24]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[25]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[26]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems , 2010 .

[27]  An unequal-order radial interpolation meshless method for Biot’s consolidation theory , 2007 .

[28]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[29]  S. Valliappan,et al.  An axi‐symmetric infinite element for transient radial flow problems , 1999 .

[30]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory , 2010 .

[31]  Nasser Khalili,et al.  Consolidation of fissured clays , 1999 .

[32]  Xiangyang Cui,et al.  A cell-based smoothed radial point interpolation method (CS-RPIM) for static and free vibration of solids , 2010 .

[33]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations , 2001 .

[34]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[35]  Guirong Liu,et al.  EDGE-BASED SMOOTHED POINT INTERPOLATION METHODS , 2008 .

[36]  S. Valliappan,et al.  An effective stress based numerical model for hydro-mechanical analysis in unsaturated porous media , 2000 .

[37]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[38]  A.P.S. Selvadurai,et al.  Influence of residual hydraulic gradients on decay curves for one-dimensional hydraulic pulse tests , 2009 .

[39]  Yunxin Zhang,et al.  Solving partial differential equations by meshless methods using radial basis functions , 2007, Appl. Math. Comput..

[40]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[41]  Gui-Rong Liu,et al.  A point interpolation method for simulating dissipation process of consolidation , 2001 .

[42]  I. Singh,et al.  HEAT TRANSFER ANALYSIS OF TWO-DIMENSIONAL FINS USING MESHLESS ELEMENT FREE GALERKIN METHOD , 2003 .

[43]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[44]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[45]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .