Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons

[1]  Christopher C. Pack,et al.  Bidirectional manipulation of GABAergic inhibition in MT: A comparison of neuronal and psychophysical performance , 2014 .

[2]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[3]  M. Bear,et al.  A Cholinergic Mechanism for Reward Timing within Primary Visual Cortex , 2013, Neuron.

[4]  C. Schreiner,et al.  Long-term modification of cortical synapses improves sensory perception , 2012, Nature Neuroscience.

[5]  K. Hoffmann,et al.  Contribution of Cholinergic and GABAergic Mechanisms to Direction Tuning, Discriminability, Response Reliability, and Neuronal Rate Correlations in Macaque Middle Temporal Area , 2012, The Journal of Neuroscience.

[6]  K. Deisseroth,et al.  A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge , 2012, Nature.

[7]  Minmin Luo,et al.  Optogenetic Activation of Basal Forebrain Cholinergic Neurons Modulates Neuronal Excitability and Sensory Responses in the Main Olfactory Bulb , 2012, The Journal of Neuroscience.

[8]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[9]  Jack Waters,et al.  Selective optogenetic stimulation of cholinergic axons in neocortex. , 2012, Journal of neurophysiology.

[10]  R. Dolan,et al.  Cholinergic Enhancement of Visual Attention and Neural Oscillations in the Human Brain , 2012, Current Biology.

[11]  Y. Dan,et al.  Activity Recall in Visual Cortical Ensemble , 2012, Nature Neuroscience.

[12]  H. Mansvelder,et al.  Nicotinic Acetylcholine Receptor β2 Subunits in the Medial Prefrontal Cortex Control Attention , 2011, Science.

[13]  Andrew D. Zaharia,et al.  The Detection of Visual Contrast in the Behaving Mouse , 2011, The Journal of Neuroscience.

[14]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[15]  K. Harris,et al.  State-Dependent Representation of Amplitude-Modulated Noise Stimuli in Rat Auditory Cortex , 2011, The Journal of Neuroscience.

[16]  Lief E. Fenno,et al.  Amygdala circuitry mediating reversible and bidirectional control of anxiety , 2011, Nature.

[17]  A. Landau,et al.  Cholinergic Enhancement Increases the Effects of Voluntary Attention but Does Not Affect Involuntary Attention , 2010, Neuropsychopharmacology.

[18]  J. Waters,et al.  Physiological Properties of Cholinergic and Non-Cholinergic Magnocellular Neurons in Acute Slices from Adult Mouse Nucleus Basalis , 2010, PloS one.

[19]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[20]  Michael J. Goard,et al.  Basal Forebrain Activation Enhances Cortical Coding of Natural Scenes , 2009, Nature Neuroscience.

[21]  D. Rasmusson,et al.  Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine , 2009, Neuroscience.

[22]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[23]  G. Boynton A framework for describing the effects of attention on visual responses , 2009, Vision Research.

[24]  Martin Sarter,et al.  Phasic acetylcholine release and the volume transmission hypothesis: time to move on , 2009, Nature Reviews Neuroscience.

[25]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[26]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[27]  M. Shaw Time to move on. , 2008, International journal of epidemiology.

[28]  M. Hawken,et al.  Gain Modulation by Nicotine in Macaque V1 , 2007, Neuron.

[29]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[30]  M. Sarter,et al.  Article Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales , 2022 .

[31]  Andrea Hasenstaub,et al.  State Changes Rapidly Modulate Cortical Neuronal Responsiveness , 2007, The Journal of Neuroscience.

[32]  Lynn Hazan,et al.  Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization , 2006, Journal of Neuroscience Methods.

[33]  J. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[34]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[35]  J. Alonso,et al.  Thalamic Burst Mode and Inattention in the Awake LGNd , 2006, Neuron.

[36]  Y. Morin,et al.  Acetylcholine release is elicited in the visual cortex, but not in the prefrontal cortex, by patterned visual stimulation: A dual in vivo microdialysis study with functional correlates in the rat brain , 2005, Neuroscience.

[37]  B. Jones,et al.  From waking to sleeping: neuronal and chemical substrates. , 2005, Trends in pharmacological sciences.

[38]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[39]  A. Alonso,et al.  Cholinergic Basal Forebrain Neurons Burst with Theta during Waking and Paradoxical Sleep , 2005, The Journal of Neuroscience.

[40]  Michael E. Hasselmo,et al.  Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection , 2005, Brain Research Reviews.

[41]  M. Castro-Alamancos,et al.  Absence of Rapid Sensory Adaptation in Neocortex during Information Processing States , 2004, Neuron.

[42]  A. Duque,et al.  Sleep-wake mechanisms and basal forebrain circuitry. , 2003, Frontiers in bioscience : a journal and virtual library.

[43]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[44]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[45]  P J Bushnell,et al.  Selective removal of cholinergic neurons in the basal forebrain alters cued target detection. , 1999, Neuroreport.

[46]  Nicolas J. Kerscher,et al.  State-dependent receptive-field restructuring in the visual cortex , 1998, Nature.

[47]  M. Kilgard,et al.  Cortical map reorganization enabled by nucleus basalis activity. , 1998, Science.

[48]  R. Metherate,et al.  Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex , 1993, Synapse.

[49]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  A. Parent,et al.  Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys , 1988, The Journal of comparative neurology.

[51]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  T. Tsumoto,et al.  A functional role of cholinergic innervation to neurons in the cat visual cortex. , 1987, Journal of neurophysiology.

[53]  M. Mesulam,et al.  Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase , 1984, Neuroscience.

[54]  A. Sillito,et al.  Cholinergic modulation of the functional organization of the cat visual cortex , 1983, Brain Research.

[55]  J. Price,et al.  Individual cells in the nucleus basalis-diagonal band complex have restricted axonal projections to the cerebral cortex in the rat , 1983, Brain Research.

[56]  J. V. van Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.