Thickness dependent thermal conductivity of gallium nitride

As the size of gallium nitride (GaN) transistors is reduced in order to reach higher operating frequencies, heat dissipation becomes the critical bottleneck in device performance and longevity. Despite the importance of characterizing the physics governing the thermal transport in thin GaN films, the literature is far from conclusive. In this letter, we report measurements of thermal conductivity in a GaN film with thickness ranging from 15–1000 nm grown on 4H-SiC without a transition layer. Additionally, we measure the thermal conductivity in the GaN film when it is 1 μm-thick in the temperature range of 300  < T< 600 K and use a phonon transport model to explain the thermal conductivity in this film.

[1]  R. Grundbacher,et al.  Degradation of AlGaN/GaN HEMTs under elevated temperature lifetesting , 2004, Microelectron. Reliab..

[2]  Avram Bar-Cohen,et al.  Advanced thermal management technologies for defense electronics , 2012, Defense, Security, and Sensing.

[3]  T. Moustakas The role of extended defects on the performance of optoelectronic devices in nitride semiconductors , 2013 .

[4]  Donald T. Morelli,et al.  Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors , 2002 .

[5]  Elbara Ziade,et al.  Modeling optical absorption for thermoreflectance measurements , 2016 .

[6]  Lin Qiu,et al.  Measurement of Thermal Conductivity of Anisotropic SiC Crystal , 2013 .

[7]  A. N. Smirnov,et al.  Phonon dispersion and Raman scattering in hexagonal GaN and AlN , 1998 .

[8]  A. Balandin,et al.  Effect of dislocations on thermal conductivity of GaN layers , 2001 .

[9]  Ming Su,et al.  Prospects for the application of GaN power devices in hybrid electric vehicle drive systems , 2013 .

[10]  Christina M. Rost,et al.  Size dictated thermal conductivity of GaN , 2016 .

[11]  Gang Chen,et al.  Applied Physics Reviews Nanoscale Thermal Transport. Ii. 2003–2012 , 2022 .

[12]  Mark J. Rosker,et al.  DARPA's Nitride Electronic NeXt Generation Technology Program , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[13]  E. Janzén,et al.  Heat Capacity of 4H‐SiC Determined by Differential Scanning Calorimetry , 2000 .

[14]  John F. Muth,et al.  Accurate dependence of gallium nitride thermal conductivity on dislocation density , 2006 .

[15]  G. Verzellesi,et al.  Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives , 2008, IEEE Transactions on Device and Materials Reliability.

[16]  A. Schmidt,et al.  Thermal property microscopy with frequency domain thermoreflectance. , 2013, The Review of scientific instruments.

[17]  D. Cahill,et al.  Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments , 2014, Nature Communications.

[18]  M. Rosker,et al.  The Present State of the Art of Wide-Bandgap Semiconductors and Their Future , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[19]  Elbara Ziade,et al.  Uncertainty analysis of thermoreflectance measurements. , 2016, The Review of scientific instruments.

[20]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[21]  A. Schmidt,et al.  A frequency-domain thermoreflectance method for the characterization of thermal properties. , 2009, The Review of scientific instruments.

[22]  K. Goodson,et al.  Thermal transport: Cool electronics. , 2015, Nature materials.

[23]  Jianfeng Xu,et al.  Transient Thermal Analysis of GaN Heterojunction Transistors (HFETs) for High-Power Applications , 2007, IEEE Microwave and Wireless Components Letters.