Enhancing Hyperspectral Image Unmixing With Spatial Correlations

This paper describes a new algorithm for hyperspectral image unmixing. Most unmixing algorithms proposed in the literature do not take into account the possible spatial correlations between the pixels. In this paper, a Bayesian model is introduced to exploit these correlations. The image to be unmixed is assumed to be partitioned into regions (or classes) where the statistical properties of the abundance coefficients are homogeneous. A Markov random field, is then proposed to model the spatial dependencies between the pixels within any class. Conditionally upon a given class, each pixel is modeled by using the classical linear mixing model with additive white Gaussian noise. For this model, the posterior distributions of the unknown parameters and hyperparameters allow the parameters of interest to be inferred. These parameters include the abundances for each pixel, the means and variances of the abundances for each class, as well as a classification map indicating the classes of all pixels in the image. To overcome the complexity of the posterior distribution, we consider a Markov chain Monte Carlo method that generates samples asymptotically distributed according to the posterior. The generated samples are then used for parameter and hyperparameter estimation. The accuracy of the proposed algorithms is illustrated on synthetic and real data.

[1]  Kamaruzaman Jusoff Precision forestry using airborne hyperspectral imaging sensor. , 2009 .

[2]  Josiane Zerubia,et al.  Texture feature analysis using a gauss-Markov model in hyperspectral image classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Michael T. Eismann,et al.  Stochastic Mixture Modeling , 2006 .

[4]  Chein-I Chang,et al.  Further results on relationship between spectral unmixing and subspace projection , 1998, IEEE Trans. Geosci. Remote. Sens..

[5]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[6]  B. Ripley Statistical inference for spatial processes , 1990 .

[7]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[8]  Jean-Yves Tourneret,et al.  Linear unmixing of hyperspectral images using a scaled gradient method , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[9]  Kanti V. Mardia,et al.  Spatial Classification Using Fuzzy Membership Models , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Alfred O. Hero,et al.  Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery , 2009, IEEE Transactions on Signal Processing.

[11]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Christophe Andrieu,et al.  Bayesian curve fitting using MCMC with applications to signal segmentation , 2002, IEEE Trans. Signal Process..

[14]  Josiane Zerubia,et al.  Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood , 1999, IEEE Trans. Image Process..

[15]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[16]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[17]  Chein-I Chang,et al.  Semi-Supervised Linear Spectral Unmixing Using a Hierarchical Bayesian Model for Hyperspectral Imagery , 2008, IEEE Transactions on Signal Processing.

[18]  Anna Tonazzini,et al.  A Markov model for blind image separation by a mean-field EM algorithm , 2006, IEEE Transactions on Image Processing.

[19]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[20]  Jean-Yves Tourneret,et al.  Joint Segmentation of Piecewise Constant Autoregressive Processes by Using a Hierarchical Model and a Bayesian Sampling Approach , 2006, IEEE Transactions on Signal Processing.

[21]  Robert S. Rand,et al.  Spatially smooth partitioning of hyperspectral imagery using spectral/spatial measures of disparity , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[23]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[24]  Lucas C. Parra,et al.  Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain , 2004, IEEE Transactions on Medical Imaging.

[25]  F. Y. Wu The Potts model , 1982 .

[26]  Yücel Altunbasak,et al.  Super-resolution reconstruction of hyperspectral images , 2005 .

[27]  Antonio Plaza,et al.  Endmember extraction algorithms from hyperspectral images , 2006 .

[28]  Ali Mohammad-Djafari,et al.  Bayesian segmentation of hyperspectral images , 2004, 0708.3013.

[29]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[30]  Ali Mohammad-Djafari,et al.  Bayesian Approach With Hidden Markov Modeling and Mean Field Approximation for Hyperspectral Data Analysis , 2008, IEEE Transactions on Image Processing.

[31]  Corinne Mailhes,et al.  Quality criteria benchmark for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Athanasios A. Rontogiannis,et al.  A soft constrained MAP estimator for supervised hyperspectral signal unmixing , 2008, 2008 16th European Signal Processing Conference.

[33]  Anuj Srivastava,et al.  A Bayesian MRF framework for labeling terrain using hyperspectral imaging , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[35]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[36]  Antonio J. Plaza,et al.  Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Jean-Yves Tourneret,et al.  An NCM-based Bayesian algorithm for hyperspectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[38]  Charles Kervrann,et al.  A Markov random field model-based approach to unsupervised texture segmentation using local and global spatial statistics , 1995, IEEE Trans. Image Process..

[39]  Chein-I. Chang Hyperspectral Data Exploitation: Theory and Applications , 2007 .

[40]  A. Gelman,et al.  Physiological Pharmacokinetic Analysis Using Population Modeling and Informative Prior Distributions , 1996 .

[41]  Ali Mohammad-Djafari,et al.  Image fusion and unsupervised joint segmentation using a HMM and MCMC algorithms , 2005, J. Electronic Imaging.

[42]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Jean-Yves Tourneret,et al.  Estimating the Number of Endmembers in Hyperspectral Images Using the Normal Compositional Model and a Hierarchical Bayesian Algorithm , 2010, IEEE Journal of Selected Topics in Signal Processing.

[44]  Gilles Celeux,et al.  EM procedures using mean field-like approximations for Markov model-based image segmentation , 2003, Pattern Recognit..

[45]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[46]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[47]  Antonio J. Plaza,et al.  Spatial-spectral preprocessing for volume-based endmember extraction algorithms using unsupervised clustering , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[48]  Zhenyu Zhou,et al.  Approximate maximum likelihood hyperparameter estimation for Gibbs priors , 1997, IEEE Trans. Image Process..

[49]  Mark L. G. Althouse,et al.  Least squares subspace projection approach to mixed pixel classification for hyperspectral images , 1998, IEEE Trans. Geosci. Remote. Sens..

[50]  Chein-I Chang,et al.  Hyperspectral Data Exploitation , 2007 .