Autonomous Agents and the Concept of Concepts

This thesis has two main themes, autonomous agents and concepts. An autonomous agent is a system capable of interacting with its environment via its own sensors and effectors in order to accomplish some task. Arguments against both purely reactive and purely deliberative agent architectures are presented in favor for hybrid approaches. A novel hybrid approach based on the concept of anticipatory systems is suggested. The basic idea is to let a meta-level component ``run'' a world model faster than real time to make predictions of future states. These predictions are used to guide the agent's behavior on a high-level, whereas the low-level behavior is controlled by a reactive component. A specialization of this architecture, a linearly quasi-anticipatory agent architecture, which treats all agents in the domain (itself included) as being reactive, has been implemented. According to this approach, the state space is divided into desired and undesired regions. When the meta-level component detects that the simulated reactive system has reached an undesired state, it modifies the actual reactive system in order to avoid reaching this state. Results from both single and multi-agent experiments indicate that the behavior of such agents is superior to that of the corresponding reactive agents. Autonomous agents also provide the framework in which the representation and the acquisition of concepts are studied. However, these topics should not be studied without first answering some more fundamental questions regarding concepts, such as: What does it mean to have a concept? What functions do, or should, concepts serve? What is known about the nature of categories? Thus, by trying to answer these questions, we investigate the very concept of concepts. Although these topics seldom are discussed within Artificial Intelligence, they have received some attention in related fields, e.g., cognitive psychology and philosophy. One of the main goals of this thesis is to pull together different lines of argumentation that have emerged from the cognitive sciences in order to establish a solid foundation for further AI research. Previous approaches to concept representation are evaluated in the light of the answers to the questions above. It is concluded that none of the existing approaches is able to serve all the desired functions and that it is unrealistic to expect that any monolithic representation would be adequate. Based on this insight, a novel composite representation scheme is presented in which each component is motivated by the functions a concept should serve. Regarding the acquisition of concepts, some of the requirements that any autonomous concept learning system must meet are identified and provide the basis for an evaluation of the existing theories. A method for making any learning algorithm satisfy one such requirement, namely that of representing concepts by characteristic descriptions, is presented together with some promising experimental results. In contrast to previous methods for learning characteristic descriptions, it is possible with this method to control the degree of generalization. In addition, a new model for integrating learning by being told, learning from examples and learning by observation is outlined.

[1]  Douglas H. Fisher,et al.  An Empirical Comparison of ID3 and Back-propagation , 1989, IJCAI.

[2]  Bernard P. Zeigler,et al.  Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems , 1990 .

[3]  Robert L. Goldstone The role of similarity in categorization: providing a groundwork , 1994, Cognition.

[4]  Teuvo Kohonen,et al.  The 'neural' phonetic typewriter , 1988, Computer.

[5]  Martha E. Pollack,et al.  Introducing the Tileworld: Experimentally Evaluating Agent Architectures , 1990, AAAI.

[6]  U. Neisser Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization , 1989 .

[7]  Stuart C. Shapiro,et al.  Of Elephants and Men , 1995 .

[8]  Peter Szolovits,et al.  What Is a Knowledge Representation? , 1993, AI Mag..

[9]  N. Hari Narayanan,et al.  Reasoning with Diagrammatic Representations: A Report on the Spring Symposium , 1993, AI Mag..

[10]  Philip J. Stone,et al.  Experiments in induction , 1966 .

[11]  Thomas G. Dietterich,et al.  Selecting Appropriate Representations for Learning from Examples , 1986, AAAI.

[12]  Brian Falkenhainer,et al.  The Structure-Mapping Engine: Algorithm and Examples , 1989, Artif. Intell..

[13]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[14]  Yves Kodratoff,et al.  Advanced Machine Learning Techniques for Computer Vision , 1992, Advanced Topics in Artificial Intelligence.

[15]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[16]  David Chapman,et al.  Pengi: An Implementation of a Theory of Activity , 1987, AAAI.

[17]  Michael P. Georgeff,et al.  Commitment and Effectiveness of Situated Agents , 1991, IJCAI.

[18]  W. Quine Ontological Relativity and Other Essays , 1969 .

[19]  Laurent Miclet,et al.  Structural Methods in Pattern Recognition , 1986 .

[20]  David Kirsh,et al.  Foundations of AI: The Big Issues , 1991, Artif. Intell..

[21]  Lawrence Birnbaum,et al.  Rigor Mortis: A Response to Nilsson's "Logic and Artificial Intelligence" , 1991, Artif. Intell..

[22]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[23]  D. Medin,et al.  The role of theories in conceptual coherence. , 1985, Psychological review.

[24]  Tom Michael Mitchell,et al.  Explanation-based generalization: A unifying view , 1986 .

[25]  Zenon W. Pylyshyn,et al.  Computation and Cognition: Toward a Foundation for Cognitive Science , 1984 .

[26]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[27]  Paul R. Cohen,et al.  Failure Recovery: A Model and Experiments , 1991, AAAI.

[28]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..

[29]  A. Sloman Why We Need Many Knowledge Representation Formalisms , 2022 .

[30]  David Kirsh,et al.  Today the Earwig, Tomorrow Man? , 1991, Artif. Intell..

[31]  Martha Pollack,et al.  Benchmarks, Testbeds, Controlled Experimentation, and the Design of Agent Architectures Experimentation, and the Design of Agent Architectures , 1993 .

[32]  Anand S. Rao,et al.  An architecture for real-time reasoning and system control , 1992, IEEE Expert.

[33]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[34]  W. Estes Models of Categorization and Category Learning , 1993 .

[35]  Ryszard S. Michalski,et al.  Conceptual Clustering: Inventing Goal-Oriented Classifications of Structured Objects , 1986 .

[36]  P. Gärdenfors Three levels of inductive inference , 1995 .

[37]  Robert F. Cromp,et al.  The design of an autonomous vehicle for the disabled , 1986, IEEE J. Robotics Autom..

[38]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[39]  Ryszard S. Michalski,et al.  Research in machine learning: recent progress, classification of methods, and future directions , 1990 .

[40]  M. Kearns,et al.  Recent Results on Boolean Concept Learning , 1987 .

[41]  Ramanathan V. Guha,et al.  Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project , 1990 .

[42]  Keith L. Clark,et al.  April - Agent PRocess Interaction Language , 1995, ECAI Workshop on Agent Theories, Architectures, and Languages.

[43]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[44]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[45]  S. Harnad Category Induction and Representation , 1987 .

[46]  Erann Gat,et al.  On the Role of Stored Internal State in the Control of Autonomous Mobile Robots , 1993, AI Mag..

[47]  Edward E. Smith,et al.  Concepts and concept formation. , 1984, Annual review of psychology.

[48]  Edward E. Smith Concepts and induction , 1989 .

[49]  Richard C. Atkinson,et al.  Introduction to psychology, 9th ed. , 1987 .

[50]  Takeo Kanade,et al.  Ambler: an autonomous rover for planetary exploration , 1989, Computer.

[51]  Douglas L. Medin,et al.  The fiction and nonfiction of features: Volume IV , 1994 .

[52]  Daniel Kuokka,et al.  MAX: a meta-reasoning architecture for “X” , 1991, SGAR.

[53]  Ryszard S. Michalski,et al.  Selection of Most Representative Training Examples and Incremental Generation of VL1 Hypotheses: The Underlying Methodology and the Description of Programs ESEL and AQ11 , 1978 .

[54]  Erann Gat,et al.  Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Controlling Real-World Mobile Robots , 1992, AAAI.

[55]  Mark A. Gluck,et al.  Information, Uncertainty and the Utility of Categories , 1985 .

[56]  Matthew L. Ginsberg,et al.  Universal Planning: An (Almost) Universally Bad Idea , 1989, AI Mag..

[57]  William M. Smith,et al.  A Study of Thinking , 1956 .

[58]  David W. Aha,et al.  Learning Representative Exemplars of Concepts: An Initial Case Study , 1987 .

[59]  Klaus P. Gross,et al.  Incremental Multiple Concept Learning Using Experiments , 1988, ML.

[60]  D. Dennett The Intentional Stance. , 1987 .

[61]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[62]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[63]  Raymond J. Mooney,et al.  An Experimental Comparison of Symbolic and Connectionist Learning Algorithms , 1989, IJCAI.

[64]  Donna J. Nagel Learning concepts with a prototype-based model for concept representation , 1986 .

[65]  G. Evans,et al.  What is a Theory of Meaning , 1976 .

[66]  Rodney A. Brooks,et al.  The role of learning in autonomous robots , 1991, COLT '91.

[67]  Matthew L. Ginsberg,et al.  Readings in Nonmonotonic Reasoning , 1987, AAAI 1987.

[68]  Carl H. Smith,et al.  Inductive Inference: Theory and Methods , 1983, CSUR.

[69]  Stephen Grossberg,et al.  ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network , 1991, [1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering.

[70]  Matthew Self,et al.  Bayesian Classification , 1988, AAAI.

[71]  Michael P. Georgeff,et al.  Decision-Making in an Embedded Reasoning System , 1989, IJCAI.

[72]  J. Burgers,et al.  Causality and Anticipation , 1975, Science.

[73]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[74]  James Kelly,et al.  AutoClass: A Bayesian Classification System , 1993, ML.

[75]  Michael Lebowitz,et al.  Concept Learning in a Rich Input Domain: Generalization-Based Memory , 1984 .

[76]  Douglas H. Fisher,et al.  A Computational Account of Basic Level and Typicality Effects , 1988, AAAI.

[77]  Gerald M. Edelman,et al.  The Remembered Present; A Biological Theory of Consciousness. , 1994 .

[78]  Edward E. Smith Category differences/automaticity , 1986, Behavioral and Brain Sciences.

[79]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part I , 1964, Inf. Control..

[80]  Patrick Henry Winston,et al.  Learning New Principles from Precedents and Exercises , 1982, Artif. Intell..

[81]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[82]  Ramesh C. Jain,et al.  Building an environment model using depth information , 1989, Computer.

[83]  Christian Balkenius,et al.  NEURAL MECHANISMS FOR SELF-ORGANIZATION OF EMERGENT SCHEMATA, DYNAMICAL SCHEMA PROCESSING, AND SEMANTIC CONSTRAINT SATISFACTION , 1993 .

[84]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[85]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[86]  Myron Wish,et al.  Three-Way Multidimensional Scaling , 1978 .

[87]  Yoav Shoham,et al.  Agent-Oriented Programming , 1992, Artif. Intell..

[88]  David J. Israel,et al.  Plans and resource‐bounded practical reasoning , 1988, Comput. Intell..

[89]  Roman Taraban,et al.  Exemplar Models and Weighted Cue Models in Category Learning , 1993 .

[90]  Stephen Jose Hanson,et al.  Conceptual clustering, categorization, and polymorphy , 2004, Machine Learning.

[91]  Gordon P. Baker,et al.  Language, sense and nonsense , 1984 .

[92]  Larry A. Rendell,et al.  A New Basis for State-Space Learning Systems and a Successful Implementation , 1983, Artif. Intell..

[93]  Cullen Schaffer,et al.  A Conservation Law for Generalization Performance , 1994, ICML.

[94]  Nicholas R. Jennings,et al.  Agent Theories, Architectures, and Languages: A Survey , 1995, ECAI Workshop on Agent Theories, Architectures, and Languages.

[95]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[96]  Michael Lebowitz,et al.  Experiments with incremental concept formation: UNIMEM , 2004, Machine Learning.

[97]  C. J. Matheus,et al.  Purpose and conceptual functions: a framework for concept representation in humans and machines , 1989 .

[98]  G. Lakoff,et al.  Women, Fire, and Dangerous Things: What Categories Reveal about the Mind , 1988 .

[99]  K. J. Craik,et al.  The nature of explanation , 1944 .

[100]  Stephen F. Smith,et al.  Coordinating space telescope operations in an integrated planning and scheduling architecture , 1991, IEEE Control Systems.

[101]  Vasant Honavar,et al.  Toward Learning Systems That Integrate Different Strategies and Representations , 1993 .

[102]  T. Poggio,et al.  A network that learns to recognize three-dimensional objects , 1990, Nature.

[103]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[104]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[105]  Christian Balkenius,et al.  Nonmonotonic Inferences in Neural Networks , 1991, KR.

[106]  Pattie Maes,et al.  Meta-Level Architectures and Reflection , 1988 .

[107]  S. Ullman Visual routines , 1984, Cognition.

[108]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[109]  Tom M. Mitchell,et al.  Version Spaces: A Candidate Elimination Approach to Rule Learning , 1977, IJCAI.

[110]  Thierry Van de Merckt Decision Trees in Numerical Attribute Spaces , 1993, IJCAI.

[111]  David W. Aha,et al.  Generalizing from Case studies: A Case Study , 1992, ML.

[112]  Aaron Sloman,et al.  Reference without Causal Links , 1986, ECAI.

[113]  Charles R. Dyer,et al.  Model-based recognition in robot vision , 1986, CSUR.

[114]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[115]  K. Nelson Concept, word, and sentence: Interrelations in acquisition and development. , 1974 .

[116]  G. Bower,et al.  From conditioning to category learning: an adaptive network model. , 1988 .

[117]  Roman Taraban,et al.  Introduction: A Coupling of Disciplines in Categorization Research , 1993 .

[118]  Lawrence W. Barsalou,et al.  Are there static category representations in long-term memory? , 1986, Behavioral and Brain Sciences.

[119]  Fredrik Ygge,et al.  Agent-Oriented Programming in Power Distribution Automation : an Architecture, a Language, and their Applicability , 1995 .

[120]  Pat Langley,et al.  Approaches to Conceptual Clustering , 1985, IJCAI.

[121]  Barbara Hayes-Roth,et al.  An integrated architecture for intelligent agents , 1991, SGAR.

[122]  Oscar Firschein,et al.  Readings in computer vision: issues, problems, principles, and paradigms , 1987 .

[123]  Douglas B. Lenat,et al.  Automated Theory Formation in Mathematics , 1977, IJCAI.

[124]  Mohan M. Trivedi,et al.  A vision system for robotic inspection and manipulation , 1989, Computer.

[125]  Jon Barwise,et al.  Model-theoretic semantics , 1989 .

[126]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[127]  Larry A. Rendell Learning Hard Concepts , 1988, EWSL.

[128]  Paul E. Utgoff,et al.  Shift of bias for inductive concept learning , 1984 .

[129]  P. Smolensky On the proper treatment of connectionism , 1988, Behavioral and Brain Sciences.

[130]  Peter B. Musgrove,et al.  An Automatic System for Acquisition of Natural Concepts , 1990, ECAI.

[131]  R. Rosen PLANNING, MANAGEMENT, POLICIES AND STRATEGIES: Four Fuzzy Concepts† , 1974 .

[132]  Michael Lebowitz,et al.  The utility of similarity-based learning in a world needing explanation , 1990 .

[133]  L. Wittgenstein Philosophical investigations = Philosophische Untersuchungen , 1958 .

[134]  S. Grossberg,et al.  Neural Dynamics of Category Learning and Recognition: Attention, Memory Consolidation, and Amnesia , 1987 .

[135]  Michael Brady,et al.  Generating and Generalizing Models of Visual Objects , 1987, Artif. Intell..

[136]  P. Johnson-Laird Procedural semantics , 1977, Cognition.

[137]  P. Johnson-Laird Mental models , 1989 .

[138]  A. Tversky Features of Similarity , 1977 .

[139]  Rune Gustavsson,et al.  Societies of Computation. A Framework for Computing & Communication , 1994 .

[140]  Nicholas R. Jennings,et al.  Intelligent agents: theory and practice , 1995, The Knowledge Engineering Review.

[141]  Harry F. Olson,et al.  Phonetic typewriter , 1957 .

[142]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[143]  Nils J. Nilsson,et al.  A Mobile Automaton: An Application of Artificial Intelligence Techniques , 1969, IJCAI.

[144]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.

[145]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[146]  Marie-Christine Jaulent,et al.  Object structure and action requirements: A compatibility model for functional recognition , 1991, Int. J. Intell. Syst..

[147]  Marvin Minsky,et al.  A framework for representing knowledge" in the psychology of computer vision , 1975 .

[148]  Vasant Honavar,et al.  Inductive learning using generalized distance measures , 1992, Defense, Security, and Sensing.

[149]  Patrick Henry Winston,et al.  Learning structural descriptions from examples , 1970 .

[150]  P. Langley,et al.  Concept formation in structured domains , 1991 .

[151]  Richard C. Atkinson,et al.  Stimulus Sampling Theory , 1967 .

[152]  Roger C. Schank,et al.  SCRIPTS, PLANS, GOALS, AND UNDERSTANDING , 1988 .

[153]  A. Newell Unified Theories of Cognition , 1990 .

[154]  Shlomo Zilberstein,et al.  Anytime Sensing Planning and Action: A Practical Model for Robot Control , 1993, IJCAI.

[155]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[156]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[157]  R A Brooks,et al.  New Approaches to Robotics , 1991, Science.

[158]  Damian M. Lyons,et al.  Achieving robustness by casting planning as adaptation of a reactive system , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[159]  M. Dummett Truth and other enigmas , 1978 .

[160]  Jude Shavlik,et al.  Refinement ofApproximate Domain Theories by Knowledge-Based Neural Networks , 1990, AAAI.

[161]  Douglas B. Lenat,et al.  Why AM and EURISKO Appear to Work , 1984, Artif. Intell..

[162]  M. R. Genesereth,et al.  Knowledge Interchange Format Version 3.0 Reference Manual , 1992, LICS 1992.

[163]  John L. Bresina,et al.  Anytime Synthetic Projection: Maximizing the Probability of Goal Satisfaction , 1990, AAAI.

[164]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[165]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[166]  Michael Wooldridge,et al.  The logical modelling of computational multi-agent systems , 1992 .

[167]  Geoffrey E. Hinton Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems , 1991 .

[168]  M S Gazzaniga,et al.  Organization of the human brain. , 1989, Science.

[169]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[170]  渡辺 慧,et al.  Knowing and guessing : a quantitative study of inference and information , 1969 .

[171]  Hiroshi Murase,et al.  Learning Object Models from Appearance , 1993, AAAI.

[172]  James W. Hearne,et al.  Clustering Without a Metric , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[173]  Michael Shneier,et al.  A Compact Relational Structure Representation , 1979, IJCAI.

[174]  Orlando Belo,et al.  Cooperation Among Opportunistic Agents on a Distributed Environment , 1995, DAI.

[175]  S. Wrobel Concept Formation and Knowledge Revision , 1994, Springer US.

[176]  Michael Matessa,et al.  An incremental Bayesian algorithm for categorization , 1991 .

[177]  Philippe G. Schyns A Modular Neural Network Model of Concept Acquisition , 1991 .

[178]  Innes A. Ferguson TouringMachines: an architecture for dynamic, rational, mobile agents , 1992 .

[179]  Georges Rey Concepts and stereotypes , 1983, Cognition.

[180]  Pattie Maes,et al.  The agent network architecture (ANA) , 1991, SGAR.

[181]  Georges Rey Concepts and conceptions: A reply to Smith, Medin and Rips , 1985, Cognition.

[182]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[183]  Ladislav J. Kohout A perspective on intelligent systems: a framework for analysis and design , 1990 .

[184]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[185]  R. Michalski How to Learn Imprecise Concepts: A Method for Employing a Two-Tiered Knowledge Representation in Learning , 1987 .

[186]  Robert M. Nosofsky,et al.  Exemplar-based approach to relating categorization, identification, and recognition , 1992 .

[187]  Padhraic Smyth,et al.  Detecting Novel Classes with Applications to Fault Diagnosis , 1992, ML.

[188]  David Kirsh,et al.  Second-generation AI theories of learning , 1986, Behavioral and Brain Sciences.

[189]  A. R. Turquette,et al.  Logic, Semantics, Metamathematics , 1957 .

[190]  R. Shepard Representation of structure in similarity data: Problems and prospects , 1974 .

[191]  John K. Tsotsos Behaviorist Intelligence and the Scaling Problem , 1995, Artif. Intell..

[192]  Lipika Dey Recognition and Learning of Unknown Objects in a Hierarchical Knowledge-Base , 1993 .

[193]  Minoru Asada,et al.  Map building for a mobile robot from sensory data , 1990, IEEE Trans. Syst. Man Cybern..

[194]  Lance J. Rips,et al.  A psychological approach to concepts: Comments on Rey's “Concepts and stereotypes” , 1984, Cognition.

[195]  Arthur R. Pope,et al.  Learning 3 D Object Recognition Models from 2 D Images , 1993 .

[196]  Pat Langley,et al.  Incremental Concept Formation with Composite Objects , 1989, ML.

[197]  Sven J. Dickinson,et al.  The Use of Geons for Generic 3D Object Recognition , 1993, IJCAI.

[198]  Baba C. Vemuri,et al.  On Three-Dimensional Surface Reconstruction Methods , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[199]  Jeffrey S. Rosenschein,et al.  Coalition, Cryptography, and Stability: Mechanisms for Coalition Formation in Task Oriented Domains , 2018, AAAI.

[200]  Lefteri H. Tsoukalas Anticipatory systems using a probabilistic-possibilistic formalism , 1990 .

[201]  A. Clark,et al.  Artificial Intelligence: The Very Idea. , 1988 .

[202]  Roy M. Turner,et al.  The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary , 2001 .

[203]  M. Minsky The Society of Mind , 1986 .

[204]  Oren Etzioni,et al.  Intelligence without Robots: A Reply to Brooks , 1993, AI Mag..

[205]  M. McCloskey,et al.  Natural categories: Well defined or fuzzy sets? , 1978 .

[206]  Jonathan H. Connell,et al.  Minimalist mobile robotics - a colony-style architecture for an artificial creature , 1990, Perspectives in artificial intelligence.

[207]  Robert C. Holte,et al.  Concept Learning and the Problem of Small Disjuncts , 1989, IJCAI.

[208]  Michael A. Arbib,et al.  A formal model of computation for sensory-based robotics , 1989, IEEE Trans. Robotics Autom..

[209]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[210]  Douglas B. Lenat,et al.  AM, an artificial intelligence approach to discovery in mathematics as heuristic search , 1976 .

[211]  Melissa Bowerman The structure and origin of semantic categories in the language learning child , 1980 .

[212]  Stuart C. Shapiro,et al.  An Autonomous Agent Architecture for Integrating "Unconscious" and "Conscious", Reasoned Behaviors , 1993, 1993 Computer Architectures for Machine Perception.

[213]  M. Dummett What Is a Theory of Meaning? (II) , 1996 .

[214]  Peter F. Patel-Schneider,et al.  The DARPA Knowledge Sharing Effort: A Progress Report , 1997, KR.

[215]  G. Dorffner,et al.  Connectionism, Symbol Grounding, and Autonomous Agents , 1993 .

[216]  Stan Matwin,et al.  Learning Two-Tiered Descriptions of Flexible Concepts: A Method Employing Examples of Varied Typicality and A Two-staged Construction of the Base Concept Representation Part II: Algorithms and Experiments , 1988 .

[217]  Manuel Blum,et al.  Toward a Mathematical Theory of Inductive Inference , 1975, Inf. Control..

[218]  Ryszard S. Michalski,et al.  Pattern Recognition as Rule-Guided Inductive Inference , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[219]  L. Komatsu Recent views of conceptual structure , 1992 .

[220]  R. E. Stepp Conceptual clustering of structured objects , 1986 .

[221]  Alan Hutchinson,et al.  Algorithmic Learning , 1994 .

[222]  Leslie Pack Kaelbling,et al.  The Synthesis of Digital Machines With Provable Epistemic Properties , 1986, TARK.

[223]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[224]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[225]  Yu. A. Gur'yan,et al.  Parts I and II , 1982 .

[226]  G. Collins,et al.  Transcending inductive category formation in learning , 1986, Behavioral and Brain Sciences.

[227]  Kim L. Boyer,et al.  Information theoretic clustering of large structural modelbases , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[228]  Leslie Pack Kaelbling,et al.  Goals as Parallel Program Specifications , 1988, AAAI.

[229]  Larry A. Rendell Comparing Systems and analyzing Functions to Improve Constructive Induction , 1989, ML.

[230]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[231]  Richard S. Sutton,et al.  Dyna, an integrated architecture for learning, planning, and reacting , 1990, SGAR.

[232]  James E. Corter,et al.  Relevant features and statistical models of generalization , 1986, Behavioral and Brain Sciences.

[233]  John L. Bresina,et al.  Integrating planning and reaction: A preliminary report , 1990 .

[234]  Steven Minton On modularity in integrated architectures , 1991, SGAR.

[235]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[236]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[237]  Stefan Wrobel,et al.  Towards a Model of Grounded Concept Formation , 1991, IJCAI.

[238]  Eleanor Rosch,et al.  Principles of Categorization , 1978 .

[239]  Robert E. Stepp,et al.  Concepts in Conceptual Clustering , 1987, IJCAI.

[240]  Sam Steel,et al.  Integrating Planning, Execution and Monitoring , 1988, AAAI.

[241]  Edward E. Smith,et al.  Categories and concepts , 1984 .

[242]  Geoffrey I. Webb,et al.  Generality is more significant than complexity : Toward an alternative to Occam ’ s Razor , 1994 .

[243]  Jonathan Amsterdam,et al.  Some Philosophical Problems with Formal Learning Theory , 1988, AAAI.

[244]  Coming out from under a cloud: AAAI and IAAI '93 , 1993, IEEE Expert.

[245]  Innes A. Ferguson,et al.  Touring Machines: autonomous agents with attitudes , 1992, Computer.

[246]  Michael J. Pazzani,et al.  Computational models of concept learning , 1991 .

[247]  Michael de la Maza A Prototype Based Symbolic Concept Learning System , 1991, ML.

[248]  Keith Devlin,et al.  Logic and information , 1991 .

[249]  James S. Albus,et al.  Outline for a theory of intelligence , 1991, IEEE Trans. Syst. Man Cybern..

[250]  Jitendra Malik,et al.  Action Representation and Purpose: Re-evaluating the Foundations of Computational Vision , 1993, IJCAI.

[251]  Laveen N. Kanal,et al.  Artificial Intelligence and Natural Perception , 1986, Annual Meeting of the IEEE Industry Applications Society.

[252]  Thomas G. Dietterich,et al.  Inductive Learning of Structural Descriptions: Evaluation Criteria and Comparative Review of Selected Methods , 1981, Artif. Intell..