Distinct behavioral and epileptic phenotype differences in 129/P mice compared to C57BL/6 mice subject to intraamygdala kainic acid-induced status epilepticus

[1]  Donncha F. O’Brien,et al.  Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy , 2016, The Journal of Neuroscience.

[2]  J. White,et al.  Repeated low-dose kainate administration in C57BL/6J mice produces temporal lobe epilepsy pathology but infrequent spontaneous seizures , 2016, Experimental Neurology.

[3]  M. Walker,et al.  Opportunities for improving animal welfare in rodent models of epilepsy and seizures , 2016, Journal of Neuroscience Methods.

[4]  F. D. Silva,et al.  Which insights have we gained from the kindling and post-status epilepticus models? , 2016, Journal of Neuroscience Methods.

[5]  E. Jimenez-Mateos,et al.  microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus , 2015, Scientific Reports.

[6]  D. Henshall,et al.  Comparison of short-term effects of midazolam and lorazepam in the intra-amygdala kainic acid model of status epilepticus in mice , 2015, Epilepsy & Behavior.

[7]  Simon Shorvon,et al.  A definition and classification of status epilepticus – Report of the ILAE Task Force on Classification of Status Epilepticus , 2015, Epilepsia.

[8]  E. Santamarina,et al.  Prognosis of status epilepticus (SE): Relationship between SE duration and subsequent development of epilepsy , 2015, Epilepsy & Behavior.

[9]  T. Thippeswamy,et al.  Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry , 2015, PloS one.

[10]  D. Lowenstein,et al.  Status epilepticus in adults , 2015, The Lancet Neurology.

[11]  L. Kaczmarek,et al.  Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis , 2015, PloS one.

[12]  A. Goldman Mechanisms of sudden unexplained death in epilepsy. , 2015, Current opinion in neurology.

[13]  Mark D. Biggin,et al.  Statistics requantitates the central dogma , 2015, Science.

[14]  W. Löscher,et al.  Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice , 2015, Neuropharmacology.

[15]  P. Schauwecker Susceptibility to Seizure-Induced Excitotoxic Cell Death Is Regulated by an Epistatic Interaction between Chr 18 (Sicd1) and Chr 15 (Sicd2) Loci in Mice , 2014, PloS one.

[16]  R. Scott What are the effects of prolonged seizures in the brain? , 2014, Epileptic disorders : international epilepsy journal with videotape.

[17]  Maria Thom,et al.  Hippocampal Sclerosis in Epilepsy: A neuropathology review. , 2014 .

[18]  M. Thom Review: Hippocampal sclerosis in epilepsy: a neuropathology review , 2014, Neuropathology and applied neurobiology.

[19]  B. Fritsch,et al.  Role of GluK1 Kainate Receptors in Seizures, Epileptic Discharges, and Epileptogenesis , 2014, The Journal of Neuroscience.

[20]  D. Boison Role of adenosine in status epilepticus: A potential new target? , 2013, Epilepsia.

[21]  C. Mooney,et al.  Increased neocortical expression of the P2X7 receptor after status epilepticus and anticonvulsant effect of P2X7 receptor antagonist A‐438079 , 2013, Epilepsia.

[22]  William C. Wetsel,et al.  Transient Inhibition of TrkB Kinase after Status Epilepticus Prevents Development of Temporal Lobe Epilepsy , 2013, Neuron.

[23]  Da-Zhi Wang,et al.  MicroRNA-22 Regulates Cardiac Hypertrophy and Remodeling in Response to Stress , 2013, Circulation research.

[24]  J. Prehn,et al.  Bmf upregulation through the AMP-activated protein kinase pathway may protect the brain from seizure-induced cell death , 2013, Cell Death and Disease.

[25]  Orrin Devinsky,et al.  Glia and epilepsy: excitability and inflammation , 2013, Trends in Neurosciences.

[26]  Daniel R. Richards,et al.  Genomic responses in mouse models poorly mimic human inflammatory diseases , 2013, Proceedings of the National Academy of Sciences.

[27]  Donncha F. O’Brien,et al.  CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. , 2013, Brain : a journal of neurology.

[28]  E. Jimenez-Mateos,et al.  Transgenic Overexpression of 14-3-3 Zeta Protects Hippocampus against Endoplasmic Reticulum Stress and Status Epilepticus In Vivo , 2013, PloS one.

[29]  K. Schughart,et al.  Human disease: Strength to strength for mouse models , 2012, Nature.

[30]  Anton J. Enright,et al.  Targeted Deletion of MicroRNA-22 Promotes Stress-Induced Cardiac Dilation and Contractile Dysfunction , 2012, Circulation.

[31]  R. S. Sloviter,et al.  Classic hippocampal sclerosis and hippocampal‐onset epilepsy produced by a single “cryptic” episode of focal hippocampal excitation in awake rats , 2010, The Journal of comparative neurology.

[32]  Jason H. Moore,et al.  Missing heritability and strategies for finding the underlying causes of complex disease , 2010, Nature Reviews Genetics.

[33]  J. Prehn,et al.  Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  E. Jimenez-Mateos,et al.  Hippocampal damage after intra-amygdala kainic acid-induced status epilepticus and seizure preconditioning-mediated neuroprotection in SJL mice , 2010, Epilepsy Research.

[35]  R. S. Sloviter,et al.  Experimental status epilepticus in animals: What are we modeling? , 2009, Epilepsia.

[36]  R. S. Sloviter,et al.  Hippocampal injury, atrophy, synaptic reorganization, and epileptogenesis after perforant pathway stimulation‐induced status epilepticus in the mouse , 2009, The Journal of comparative neurology.

[37]  David C. Henshall,et al.  Unilateral hippocampal CA3-predominant damage and short latency epileptogenesis after intra-amygdala microinjection of kainic acid in mice , 2008, Brain Research.

[38]  Steve S. Chung,et al.  Nonconvulsive status epilepticus , 2008, Epilepsy & Behavior.

[39]  Brita Fritsch,et al.  Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy , 2008, Epilepsy Research.

[40]  Shigeyoshi Itohara,et al.  Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. , 2008, The Journal of clinical investigation.

[41]  C. Helmstaedter Cognitive outcome of status epilepticus in adults , 2007, Epilepsia.

[42]  J. Prehn,et al.  Bcl-w protects hippocampus during experimental status epilepticus. , 2007, The American journal of pathology.

[43]  W. Löscher Drug Transporters in the Epileptic Brain , 2007, Epilepsia.

[44]  J. Crabbe,et al.  Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades , 2006, Proceedings of the National Academy of Sciences.

[45]  J. Gugten,et al.  Mouse strain differences in autonomic responses to stress , 2006, Genes, brain, and behavior.

[46]  R. Simon,et al.  Development of a model of seizure‐induced hippocampal injury with features of programmed cell death in the BALB/c mouse , 2004, Journal of neuroscience research.

[47]  G. Mckhann,et al.  Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology , 2003, Neuroscience.

[48]  D. Wozniak,et al.  An animal model of generalized nonconvulsive status epilepticus: immediate characteristics and long-term effects , 2003, Experimental Neurology.

[49]  R. Simon,et al.  Characterization of neuronal death induced by focally evoked limbic seizures in the C57BL/6 mouse , 2002, Journal of neuroscience research.

[50]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[51]  D. Fujikawa,et al.  Status Epilepticus–Induced Neuronal Loss in Humans Without Systemic Complications or Epilepsy , 2000, Epilepsia.

[52]  Weiquan Lu,et al.  The Tissue Plasminogen Activator (Tpa/Plasmin) Extracellular Proteolytic System Regulates Seizure-Induced Hippocampal Mossy Fiber Outgrowth through a Proteoglycan Substrate , 2000, The Journal of cell biology.

[53]  D. Hosford,et al.  Animal models of nonconvulsive status epilepticus. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[54]  Muriel T. Davisson,et al.  Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice , 1997, Nature Genetics.

[55]  O. Steward,et al.  Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Robert S. Fisher,et al.  Animal models of the epilepsies , 1989, Brain Research Reviews.

[57]  L. Goodman,et al.  Comparative assays of antiepileptic drugs in mice and rats. , 1952, The Journal of pharmacology and experimental therapeutics.

[58]  Natalia Volfovsky,et al.  Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition. , 2008, Genome research.

[59]  G. Paxinos,et al.  Comprar The Mouse Brain in Stereotaxic Coordinates, The coronal plates and diagrams Compact, 3rd Edition | Keith Franklin | 9780123742445 | Academic Press , 2008 .

[60]  Janan T. Eppig,et al.  Genealogies of mouse inbred strains , 2000, Nature Genetics.