Three-dimensional simulation model of switching dynamics in phase change random access memory cells

Switching dynamics associated with reset and set operations of vertical phase change random access memory (PCRAM) cells are studied using a three-dimensional simulation model. Based on a finite difference method, the numerical algorithm simulates the electrical, thermal, and phase change dynamics in the PCRAM device during switching operations taking into account electrical and thermal percolation characteristics of the phase change material. Toward a better understanding of switching operations and the optimization of cell designs, the obtained simulation results provide unprecedented insight into temporally and spatially resolved kinetics of device temperature, current densities, and phase transitions. Threshold conditions for reset and set operations are identified in close agreement to existing experimental data, and the scaling ability of the investigated vertical PCRAM cell design to a minimum feature size of at least 40 nm is demonstrated.

[1]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[2]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[3]  J. Frankel Kinetic theory of liquids , 1946 .

[4]  David Turnbull,et al.  Rate of Nucleation in Condensed Systems , 1949 .

[5]  K. Easterling,et al.  Phase Transformations in Metals and Alloys , 2021 .

[6]  J W Goodman,et al.  Laser-induced local heating of multilayers. , 1982, Applied optics.

[7]  C. Peng,et al.  Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media , 1997 .

[8]  Guy C. Wicker Nonvolatile high-density high-performance phase-change memory , 1999, Smart Materials, Nano-, and Micro- Smart Systems.

[9]  Myong R. Kim,et al.  Crystallization behavior of sputter-deposited amorphous Ge2Sb2Te5 thin films , 1999 .

[10]  Masud Mansuripur,et al.  Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films , 2000 .

[11]  E. Wright,et al.  Dynamic theory of crystallization in Ge2Sb2.3Te5 phase-change optical recording media. , 2000, Applied optics.

[12]  S. Hudgens,et al.  Total dose radiation response and high temperature imprint characteristics of chalcogenide based RAM resistor elements , 2000 .

[13]  Alain Fargeix,et al.  Amorphization and Crystallization mechanisms in GeSbTe-based Phase Change Optical Disks , 2001 .

[14]  L. E. Shelimova,et al.  Thermoelectric Properties of nGeTe · mSb2Te3Layered Compounds , 2001 .

[15]  J. González-Hernández,et al.  Determination of the glass transition and nucleation temperatures in Ge2Sb2Te5 sputtered films , 2002 .

[16]  M. Morishita,et al.  Growth of a Large GaN Single Crystal Using the Liquid Phase Epitaxy (LPE) Technique , 2003 .

[17]  U-In Chung,et al.  An edge contact type cell for Phase Change RAM featuring very low power consumption , 2003, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407).

[18]  J. F. Webb,et al.  One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F=0.15 μm) , 2003 .

[19]  Jingsong Wei,et al.  Theoretical explanation of different crystallization processes between as-deposited and melt-quenched amorphous Ge2Sb2Te5 thin films , 2003 .

[20]  C. Wright,et al.  Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices , 2004 .

[21]  A. Pirovano,et al.  Analysis of phase distribution in phase-change nonvolatile memories , 2004, IEEE Electron Device Letters.

[22]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[23]  Martin Laurenzis,et al.  Electrical percolation characteristics of Ge2Sb2Te5 and Sn doped Ge2Sb2Te5 thin films during the amorphous to crystalline phase transition , 2005 .

[24]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[25]  Jie Feng,et al.  Si–Sb–Te films for phase-change random access memory , 2006 .

[26]  Simulation of the writing on the patterned optical phase-change recording media , 2006 .