The uses of quantum field theory in diffusion-limited reactions

[1]  Electron scavenging in glasses , 1979 .

[2]  A. Blumen Excitation transfer from a donor to acceptors in condensed media: a unified approach , 1981 .

[3]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[4]  R. Kopelman,et al.  Critical exciton annihilation: Diffusion, percolation or anderson transition? , 1981 .

[5]  P. Grassberger,et al.  The long time properties of diffusion in a medium with static traps , 1982 .

[6]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[7]  D. Torney,et al.  Diffusion-limited reaction rate theory for two-dimensional systems , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  A. Mikhailov,et al.  Quantum field methods in the theory of diffusion-controlled reactions , 1985 .

[9]  H. Spohn,et al.  Excess noise for driven diffusive systems. , 1985, Physical review letters.

[10]  West,et al.  Steady-state segregation in diffusion-limited reactions. , 1988, Physical review letters.

[11]  ben-Avraham,et al.  Equilibrium of two-species annihilation with input. , 1988, Physical review. A, General physics.

[12]  R. Kopelman,et al.  Exciton reactions in ultrathin molecular wires, filaments and pores: A case study of kinetics and self-ordering in low dimensions , 1988 .

[13]  A. Bray Universal scaling function for domain growth in the Glauber-Ising chain , 1990 .

[14]  Kaski,et al.  Domain scaling and glassy dynamics in a one-dimensional Kawasaki Ising model. , 1991, Physical review. B, Condensed matter.

[15]  B. Chopard,et al.  Some properties of the diffusion-limited reaction nA + mB → C with homogeneous and inhomogeneous initial conditions , 1992 .

[16]  Lin Exact results for one-dimensional reversible coagulation in discrete spatial formalism. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  Majumdar,et al.  Phase separation model with conserved order parameter on the Bethe lattice. , 1993, Physical review letters.

[18]  G. Schütz,et al.  Generalized Bethe ansatz solution of a one-dimensional asymmetric exclusion process on a ring with blockage , 1993 .

[19]  D. ben-Avraham,et al.  Diffusion-limited many-body reactions in one dimension and the method of interparticle distribuion functions , 1994 .

[20]  D. Stauffer Ising spinodal decomposition at T=O in one to five dimensions , 1994 .

[21]  Diffusion-annihilation in the presence of a driving field , 1995, cond-mat/9503086.