A catalogue of radio supernova remnants and candidate supernova remnants in the EMU/POSSUM Galactic pilot field
暂无分享,去创建一个
A. Hopkins | E. Rosolowsky | T. Landecker | D. Leahy | F. Bufano | E. Carretti | B. Koribalski | B. Gaensler | R. Kothes | A. Ingallinera | Cameron Van Eck | W. Becker | J. West | J. Marvil | Xiao-Hui Sun | T. Willis | Brianna D. Ball | Miroslav D. Filipovi'c
[1] D. Leahy,et al. Radio Emission from Supernova Remnants: Model Comparison with Observations , 2022, Universe.
[2] K. Menten,et al. A global view on star formation: The GLOSTAR Galactic plane survey. VII. Supernova remnants in the Galactic longitude range 28° < l < 36° , 2022, Astronomy & Astrophysics.
[3] D. Leahy,et al. Distances, Radial Distribution, and Total Number of Galactic Supernova Remnants , 2022, The Astrophysical Journal.
[4] M. Barlow,et al. Properties of shocked dust grains in supernova remnants , 2022, 2208.11137.
[5] J. Binney,et al. Self-consistent models of our Galaxy , 2022, Monthly Notices of the Royal Astronomical Society.
[6] A. Hopkins,et al. The Evolutionary Map of the Universe pilot survey , 2021, Publications of the Astronomical Society of Australia.
[7] Shou-Chieh Hsu,et al. CARTA: The Cube Analysis and Rendering Tool for Astronomy , 2021 .
[8] K. Menten,et al. A global view on star formation: The GLOSTAR Galactic plane survey , 2021, Astronomy & Astrophysics.
[9] E. Lenc,et al. Australian square kilometre array pathfinder: I. system description , 2021, Publications of the Astronomical Society of Australia.
[10] B. Jiang,et al. Distances to the supernova remnants in the inner disk , 2020, Astronomy & Astrophysics.
[11] D. Leahy,et al. Evolutionary Models for 43 Galactic Supernova Remnants with Distances and X-Ray Spectra , 2020, The Astrophysical Journal Supplement Series.
[12] T. Murphy,et al. Candidate radio supernova remnants observed by the GLEAM survey over 345° < l < 60° and 180° < l < 240° , 2019, Publications of the Astronomical Society of Australia.
[13] D. A. Green,et al. A revised catalogue of 294 Galactic supernova remnants , 2019, Journal of Astrophysics and Astronomy.
[14] Y. Wang,et al. Confirmation Of Two Galactic Supernova Remnant Candidates Discovered by THOR , 2018, The Astrophysical Journal.
[15] R. Manchester,et al. Pulsar Rotation Measures and Large-scale Magnetic Field Reversals in the Galactic Disk , 2017, 1712.01997.
[16] R. Klessen,et al. Galactic Supernova Remnant Candidates Discovered by THOR , 2017, 1705.10927.
[17] P. Reich,et al. G181.1+9.5, a new high-latitude low-surface brightness supernova remnant , 2016, 1612.01956.
[18] N. Flagey,et al. High-resolution Very Large Array observations of 18 MIPSGAL bubbles , 2016, 1609.00003.
[19] L. Chomiuk,et al. Supernova Remnants in the Local Group I: A model for the radio luminosity function and visibility times of supernova remnants , 2016, 1605.04923.
[20] D. A. Green,et al. Constraints on the distribution of supernova remnants with Galactocentric radius , 2015, 1508.02931.
[21] E. Lenc,et al. GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.
[22] M. Guerrero,et al. WISE morphological study of Wolf-Rayet nebulae , 2015, 1503.06878.
[23] T. Murphy,et al. The Second Epoch Molonglo Galactic Plane Survey: Images and Candidate Supernova Remnants , 2014, Publications of the Astronomical Society of Australia.
[24] V. Cunningham,et al. THE WISE CATALOG OF GALACTIC H ii REGIONS , 2013, 1312.6202.
[25] Dominic J. Benford,et al. Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.
[26] S. Safi-Harb,et al. A census of high-energy observations of Galactic supernova remnants , 2012, 1202.0245.
[27] S. Reynolds,et al. Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae , 2011, 1104.4047.
[28] S. Carey,et al. THE MIPSGAL VIEW OF SUPERNOVA REMNANTS IN THE GALACTIC PLANE , 2011, 1104.2894.
[29] B. Draine. Physics of the Interstellar and Intergalactic Medium , 2011 .
[30] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[31] D. Maoz,et al. On the size distribution of supernova remnants in the Magellanic Clouds , 2010, 1003.3030.
[32] N. Flagey,et al. A CATALOG OF MIPSGAL DISK AND RING SOURCES , 2010, 1002.4421.
[33] Terrance J. Gaetz,et al. THE CHANDRA ACIS SURVEY OF M33: X-RAY, OPTICAL, AND RADIO PROPERTIES OF THE SUPERNOVA REMNANTS , 2010, 1002.1839.
[34] V.V.Gvaramadze,et al. Revealing evolved massive stars with Spitzer , 2009, 0909.0458.
[35] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[36] F. Camilo,et al. 1E 1547.0–5408: A Radio-emitting Magnetar with a Rotation Period of 2 Seconds , 2007, 0708.0002.
[37] B. M. Gaensler,et al. The Compact X-Ray Source 1E 1547.0–5408 and the Radio Shell G327.24-0.13: A New Proposed Association between a Candidate Magnetar and a Candidate Supernova Remnant , 2007, 0706.1054.
[38] S. Bianchi,et al. Dust formation and survival in supernova ejecta , 2007, 0704.0586.
[39] F. Camilo,et al. The Radio Emission, X-Ray Emission, and Hydrodynamics of G328.4+0.2: A Comprehensive Analysis of a Luminous Pulsar Wind Nebula, Its Neutron Star, and the Progenitor Supernova Explosion , 2007, 0704.0219.
[40] N. E. Kassim,et al. Discovery of 35 New Supernova Remnants in the Inner Galaxy , 2006, astro-ph/0601451.
[41] R. Becker,et al. MAGPIS: A Multi-Array Galactic Plane Imaging Survey , 2006 .
[42] B. C. Joshi,et al. The Parkes multibeam pulsar survey – IV. Discovery of 180 pulsars and parameters for 281 previously known pulsars , 2004, astro-ph/0405364.
[43] R. Manchester,et al. The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.
[44] M. Guedel. Stellar Radio Astronomy: Probing Stellar Atmospheres from Protostars to Giants , 2002, astro-ph/0206436.
[45] Bonn,et al. A high frequency radio study of G11.2 0.3, a historical supernova remnant with a flat spectrum core , 2001, astro-ph/0104384.
[46] Mit,et al. The Southern Galactic Plane Survey: The Test Region , 2000, astro-ph/0012302.
[47] R. Strom,et al. Radio Emission from the Composite Supernova Remnant G326.3–1.8 (MSH 15–56) , 2000, astro-ph/0007230.
[48] U. Sydney,et al. G328.4+0.2: A Large and Luminous Crab-like Supernova Remnant , 2000, astro-ph/0003342.
[49] Yang Chen,et al. X-Ray Observation and Analysis of the Composite Supernova Remnant G327.1–1.1 , 1998, astro-ph/9808339.
[50] A. Green,et al. The MOST supernova remnant catalogue (MSC). , 1996 .
[51] C. McKee,et al. Evolution of Nonradiative Supernova Remnants , 1996 .
[52] D. Frail,et al. The Radio Lifetime of Supernova Remnants and the Distribution of Pulsar Velocities at Birth , 1994, astro-ph/9407031.
[53] A. Schroeder,et al. The Galactic supernova rate , 1994 .
[54] A. Bell. The acceleration of cosmic rays in shock fronts – I , 1978 .
[55] J. Whiteoak,et al. A Supernova Remnant in Centaurus , 1967, Publications of the Astronomical Society of Australia.
[56] H. Laan. Intense Shell Sources of Radio Emission , 1962 .
[57] OUP accepted manuscript , 2022, Monthly notices of the Royal Astronomical Society.
[58] Juergen Ott,et al. CARTA: Cube Analysis and Rendering Tool for Astronomy , 2020 .
[59] G. Dubner. Radio Emission from Supernova Remnants , 2017 .
[60] R. Kothes. Radio Properties of Pulsar Wind Nebulae , 2017 .
[61] D. Torres. Modelling Pulsar Wind Nebulae , 2017 .
[62] P. Murdin,et al. Handbook of Supernovae , 2017 .
[63] S. Ransom,et al. THE ASTROPHYSICAL JOURNAL, IN PRESS Preprint typeset using LATEX style emulateapj v. 03/07/07 THE MAGNETAR 1E 1547.0–5408: RADIO SPECTRUM, POLARIMETRY, AND TIMING , 2007 .
[64] D. A. Green. A Catalogue of Galactic Supernova Remnants , 1996 .
[65] Jeremiah P. Ostriker,et al. Particle Acceleration by Astrophysical Shocks , 1978 .
[66] S. Rosseland. Theoretical Astrophysics , 1928 .