A catalogue of radio supernova remnants and candidate supernova remnants in the EMU/POSSUM Galactic pilot field

We use data from the pilot observations of the EMU/POSSUM surveys to study the ‘missing supernova remnant (SNR) problem’, the discrepancy between the number of Galactic SNRs that have been observed, and the number that are estimated to exist. The Evolutionary Map of the Universe (EMU) and the Polarization Sky Survey of the Universe’s Magnetism (POSSUM) are radio sky surveys that are conducted using the Australian Square Kilometre Array Pathfinder (ASKAP). We report on the properties of seven known SNRs in the joint Galactic pilot field, with an approximate longitude and latitude of 323° ≤ l ≤ 330° and −4° ≤ b ≤ 2°, respectively, and identify 21 SNR candidates. Of these, four have been previously identified as SNR candidates, three were previously listed as a single SNR, 13 have not been previously studied, and one has been studied in the infrared. These are the first discoveries of Galactic SNR candidates with EMU/POSSUM and, if confirmed, they will increase the SNR density in this field by a factor of 4. By comparing our SNR candidates to the known Galactic SNR population, we demonstrate that many of these sources were likely missed in previous surveys due to their small angular size and/or low surface brightness. We suspect that there are SNRs in this field that remain undetected due to limitations set by the local background and confusion with other radio sources. The results of this paper demonstrate the potential of the full EMU/POSSUM surveys to uncover more of the missing Galactic SNR population.

[1]  D. Leahy,et al.  Radio Emission from Supernova Remnants: Model Comparison with Observations , 2022, Universe.

[2]  K. Menten,et al.  A global view on star formation: The GLOSTAR Galactic plane survey. VII. Supernova remnants in the Galactic longitude range 28° < l < 36° , 2022, Astronomy &amp; Astrophysics.

[3]  D. Leahy,et al.  Distances, Radial Distribution, and Total Number of Galactic Supernova Remnants , 2022, The Astrophysical Journal.

[4]  M. Barlow,et al.  Properties of shocked dust grains in supernova remnants , 2022, 2208.11137.

[5]  J. Binney,et al.  Self-consistent models of our Galaxy , 2022, Monthly Notices of the Royal Astronomical Society.

[6]  A. Hopkins,et al.  The Evolutionary Map of the Universe pilot survey , 2021, Publications of the Astronomical Society of Australia.

[7]  Shou-Chieh Hsu,et al.  CARTA: The Cube Analysis and Rendering Tool for Astronomy , 2021 .

[8]  K. Menten,et al.  A global view on star formation: The GLOSTAR Galactic plane survey , 2021, Astronomy & Astrophysics.

[9]  E. Lenc,et al.  Australian square kilometre array pathfinder: I. system description , 2021, Publications of the Astronomical Society of Australia.

[10]  B. Jiang,et al.  Distances to the supernova remnants in the inner disk , 2020, Astronomy & Astrophysics.

[11]  D. Leahy,et al.  Evolutionary Models for 43 Galactic Supernova Remnants with Distances and X-Ray Spectra , 2020, The Astrophysical Journal Supplement Series.

[12]  T. Murphy,et al.  Candidate radio supernova remnants observed by the GLEAM survey over 345° < l < 60° and 180° < l < 240° , 2019, Publications of the Astronomical Society of Australia.

[13]  D. A. Green,et al.  A revised catalogue of 294 Galactic supernova remnants , 2019, Journal of Astrophysics and Astronomy.

[14]  Y. Wang,et al.  Confirmation Of Two Galactic Supernova Remnant Candidates Discovered by THOR , 2018, The Astrophysical Journal.

[15]  R. Manchester,et al.  Pulsar Rotation Measures and Large-scale Magnetic Field Reversals in the Galactic Disk , 2017, 1712.01997.

[16]  R. Klessen,et al.  Galactic Supernova Remnant Candidates Discovered by THOR , 2017, 1705.10927.

[17]  P. Reich,et al.  G181.1+9.5, a new high-latitude low-surface brightness supernova remnant , 2016, 1612.01956.

[18]  N. Flagey,et al.  High-resolution Very Large Array observations of 18 MIPSGAL bubbles , 2016, 1609.00003.

[19]  L. Chomiuk,et al.  Supernova Remnants in the Local Group I: A model for the radio luminosity function and visibility times of supernova remnants , 2016, 1605.04923.

[20]  D. A. Green,et al.  Constraints on the distribution of supernova remnants with Galactocentric radius , 2015, 1508.02931.

[21]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[22]  M. Guerrero,et al.  WISE morphological study of Wolf-Rayet nebulae , 2015, 1503.06878.

[23]  T. Murphy,et al.  The Second Epoch Molonglo Galactic Plane Survey: Images and Candidate Supernova Remnants , 2014, Publications of the Astronomical Society of Australia.

[24]  V. Cunningham,et al.  THE WISE CATALOG OF GALACTIC H ii REGIONS , 2013, 1312.6202.

[25]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[26]  S. Safi-Harb,et al.  A census of high-energy observations of Galactic supernova remnants , 2012, 1202.0245.

[27]  S. Reynolds,et al.  Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae , 2011, 1104.4047.

[28]  S. Carey,et al.  THE MIPSGAL VIEW OF SUPERNOVA REMNANTS IN THE GALACTIC PLANE , 2011, 1104.2894.

[29]  B. Draine Physics of the Interstellar and Intergalactic Medium , 2011 .

[30]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[31]  D. Maoz,et al.  On the size distribution of supernova remnants in the Magellanic Clouds , 2010, 1003.3030.

[32]  N. Flagey,et al.  A CATALOG OF MIPSGAL DISK AND RING SOURCES , 2010, 1002.4421.

[33]  Terrance J. Gaetz,et al.  THE CHANDRA ACIS SURVEY OF M33: X-RAY, OPTICAL, AND RADIO PROPERTIES OF THE SUPERNOVA REMNANTS , 2010, 1002.1839.

[34]  V.V.Gvaramadze,et al.  Revealing evolved massive stars with Spitzer , 2009, 0909.0458.

[35]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[36]  F. Camilo,et al.  1E 1547.0–5408: A Radio-emitting Magnetar with a Rotation Period of 2 Seconds , 2007, 0708.0002.

[37]  B. M. Gaensler,et al.  The Compact X-Ray Source 1E 1547.0–5408 and the Radio Shell G327.24-0.13: A New Proposed Association between a Candidate Magnetar and a Candidate Supernova Remnant , 2007, 0706.1054.

[38]  S. Bianchi,et al.  Dust formation and survival in supernova ejecta , 2007, 0704.0586.

[39]  F. Camilo,et al.  The Radio Emission, X-Ray Emission, and Hydrodynamics of G328.4+0.2: A Comprehensive Analysis of a Luminous Pulsar Wind Nebula, Its Neutron Star, and the Progenitor Supernova Explosion , 2007, 0704.0219.

[40]  N. E. Kassim,et al.  Discovery of 35 New Supernova Remnants in the Inner Galaxy , 2006, astro-ph/0601451.

[41]  R. Becker,et al.  MAGPIS: A Multi-Array Galactic Plane Imaging Survey , 2006 .

[42]  B. C. Joshi,et al.  The Parkes multibeam pulsar survey – IV. Discovery of 180 pulsars and parameters for 281 previously known pulsars , 2004, astro-ph/0405364.

[43]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.

[44]  M. Guedel Stellar Radio Astronomy: Probing Stellar Atmospheres from Protostars to Giants , 2002, astro-ph/0206436.

[45]  Bonn,et al.  A high frequency radio study of G11.2 0.3, a historical supernova remnant with a flat spectrum core , 2001, astro-ph/0104384.

[46]  Mit,et al.  The Southern Galactic Plane Survey: The Test Region , 2000, astro-ph/0012302.

[47]  R. Strom,et al.  Radio Emission from the Composite Supernova Remnant G326.3–1.8 (MSH 15–56) , 2000, astro-ph/0007230.

[48]  U. Sydney,et al.  G328.4+0.2: A Large and Luminous Crab-like Supernova Remnant , 2000, astro-ph/0003342.

[49]  Yang Chen,et al.  X-Ray Observation and Analysis of the Composite Supernova Remnant G327.1–1.1 , 1998, astro-ph/9808339.

[50]  A. Green,et al.  The MOST supernova remnant catalogue (MSC). , 1996 .

[51]  C. McKee,et al.  Evolution of Nonradiative Supernova Remnants , 1996 .

[52]  D. Frail,et al.  The Radio Lifetime of Supernova Remnants and the Distribution of Pulsar Velocities at Birth , 1994, astro-ph/9407031.

[53]  A. Schroeder,et al.  The Galactic supernova rate , 1994 .

[54]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[55]  J. Whiteoak,et al.  A Supernova Remnant in Centaurus , 1967, Publications of the Astronomical Society of Australia.

[56]  H. Laan Intense Shell Sources of Radio Emission , 1962 .

[57]  OUP accepted manuscript , 2022, Monthly notices of the Royal Astronomical Society.

[58]  Juergen Ott,et al.  CARTA: Cube Analysis and Rendering Tool for Astronomy , 2020 .

[59]  G. Dubner Radio Emission from Supernova Remnants , 2017 .

[60]  R. Kothes Radio Properties of Pulsar Wind Nebulae , 2017 .

[61]  D. Torres Modelling Pulsar Wind Nebulae , 2017 .

[62]  P. Murdin,et al.  Handbook of Supernovae , 2017 .

[63]  S. Ransom,et al.  THE ASTROPHYSICAL JOURNAL, IN PRESS Preprint typeset using LATEX style emulateapj v. 03/07/07 THE MAGNETAR 1E 1547.0–5408: RADIO SPECTRUM, POLARIMETRY, AND TIMING , 2007 .

[64]  D. A. Green A Catalogue of Galactic Supernova Remnants , 1996 .

[65]  Jeremiah P. Ostriker,et al.  Particle Acceleration by Astrophysical Shocks , 1978 .

[66]  S. Rosseland Theoretical Astrophysics , 1928 .