A Post-quantum Digital Signature Scheme Based on Supersingular Isogenies

We present the first general-purpose digital signature scheme based on supersingular elliptic curve isogenies secure against quantum adversaries in the quantum random oracle model with small key sizes. This scheme is an application of Unruh’s construction of non-interactive zero-knowledge proofs to an interactive zero-knowledge proof proposed by De Feo, Jao, and Plut. We implement our proposed scheme on an x86-64 PC platform as well as an ARM-powered device. We exploit the state-of-the-art techniques to speed up the computations for general C and assembly. Finally, we provide timing results for real world applications.

[1]  Yumin Wang,et al.  Toward Quantum-Resistant Strong Designated Verifier Signature from Isogenies , 2012, 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems.

[2]  G. Ballew,et al.  The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.

[3]  Stanislav Bulygin,et al.  Selecting Parameters for the Rainbow Signature Scheme , 2010, PQCrypto.

[4]  David Jao,et al.  Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2011, J. Math. Cryptol..

[5]  Steven D. Galbraith,et al.  Signature Schemes Based On Supersingular Isogeny Problems , 2016, IACR Cryptol. ePrint Arch..

[6]  Matthieu Finiasz,et al.  How to Achieve a McEliece-Based Digital Signature Scheme , 2001, ASIACRYPT.

[7]  Alexander Rostovtsev,et al.  Public-Key Cryptosystem Based on Isogenies , 2006, IACR Cryptol. ePrint Arch..

[8]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[9]  John Watrous Zero-Knowledge against Quantum Attacks , 2009, SIAM J. Comput..

[10]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[11]  David Jao,et al.  Efficient Compression of SIDH Public Keys , 2017, EUROCRYPT.

[12]  Seiichiro Tani,et al.  Claw finding algorithms using quantum walk , 2007, Theor. Comput. Sci..

[13]  Anton Stolbunov,et al.  Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves , 2010, Adv. Math. Commun..

[14]  Mark Zhandry,et al.  Secure Identity-Based Encryption in the Quantum Random Oracle Model , 2012, CRYPTO.

[15]  Roberto Maria Avanzi,et al.  Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second Edition , 2012 .

[16]  Reza Azarderakhsh,et al.  Post-Quantum Cryptography on FPGA Based on Isogenies on Elliptic Curves , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Andris Ambainis,et al.  Quantum Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[18]  Craig Costello,et al.  Efficient Algorithms for Supersingular Isogeny Diffie-Hellman , 2016, CRYPTO.

[19]  Mark Zhandry,et al.  Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World , 2013, CRYPTO.

[20]  Mark Zhandry,et al.  A note on the quantum collision and set equality problems , 2013, Quantum Inf. Comput..

[21]  Paulo S. L. M. Barreto,et al.  Sharper Ring-LWE Signatures , 2016, IACR Cryptol. ePrint Arch..

[22]  David Jao,et al.  Isogeny-Based Quantum-Resistant Undeniable Signatures , 2014, PQCrypto.

[23]  Shengyu Zhang Promised and Distributed Quantum Search , 2005, COCOON.

[24]  M. Seshadri Srinath,et al.  Isogeny-based Quantum-resistant Undeniable Blind Signature Scheme , 2018, Int. J. Netw. Secur..

[25]  Dominique Unruh,et al.  Quantum Proofs of Knowledge , 2012, IACR Cryptol. ePrint Arch..

[26]  Léo Ducas,et al.  Lattice Signatures and Bimodal Gaussians , 2013, IACR Cryptol. ePrint Arch..

[27]  Dominique Unruh,et al.  Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle Model , 2015, EUROCRYPT.

[28]  M. Hellman The Mathematics of Public-Key Cryptography , 1979 .

[29]  Jintai Ding,et al.  Rainbow, a New Multivariable Polynomial Signature Scheme , 2005, ACNS.

[30]  Jean Marc Couveignes,et al.  Hard Homogeneous Spaces , 2006, IACR Cryptol. ePrint Arch..

[31]  David Jao,et al.  Constructing elliptic curve isogenies in quantum subexponential time , 2010, J. Math. Cryptol..

[32]  J. Tate Endomorphisms of abelian varieties over finite fields , 1966 .

[33]  Reza Azarderakhsh,et al.  Key Compression for Isogeny-Based Cryptosystems , 2016, AsiaPKC '16.

[34]  Peter Schwabe,et al.  SPHINCS: Practical Stateless Hash-Based Signatures , 2015, EUROCRYPT.

[35]  Tanja Lange,et al.  Attacking and defending the McEliece cryptosystem , 2008, IACR Cryptol. ePrint Arch..

[36]  Reza Azarderakhsh,et al.  NEON-SIDH: Effi cient Implementation of Supersingular Isogeny Diffi e-Hellman Key-Exchange Protocol on ARM , 2016, IACR Cryptol. ePrint Arch..

[37]  Amos Fiat,et al.  How to Prove Yourself: Practical Solutions to Identification and Signature Problems , 1986, CRYPTO.