Solar cell efficiency tables (Version 53)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2018 are reviewed.

[1]  R. Brendel,et al.  Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells , 2018, Solar Energy Materials and Solar Cells.

[2]  F. Dimroth,et al.  Direct Growth of III–V/Silicon Triple-Junction Solar Cells With 19.7% Efficiency , 2018, IEEE Journal of Photovoltaics.

[3]  M. Green,et al.  Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment , 2018, Nature Energy.

[4]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[5]  F. Dimroth,et al.  III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration , 2018 .

[6]  M. Steiner,et al.  High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells , 2018 .

[7]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[8]  S. Glunz,et al.  n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation , 2017 .

[9]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.

[10]  Kelsey A. W. Horowitz,et al.  Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions , 2017, Nature Energy.

[11]  Jan Benick,et al.  High-Efficiency n-Type HP mc Silicon Solar Cells , 2017, IEEE Journal of Photovoltaics.

[12]  Yang Yang,et al.  Make perovskite solar cells stable , 2017, Nature.

[13]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[14]  Takuya Matsui,et al.  Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell , 2016 .

[15]  Martin A. Green,et al.  Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer , 2016 .

[16]  Gerald Siefer,et al.  43% Sunlight to Electricity Conversion Efficiency Using CPV , 2016, IEEE Journal of Photovoltaics.

[17]  B. Mereu,et al.  Improved conversion efficiencies of thin-film silicon tandem (MICROMORPH™) photovoltaic modules , 2016 .

[18]  K. Emery,et al.  Improvements in Sunlight to Electricity Conversion Efficiency: above 40% for Direct Sunlight and over 30% for Global , 2015 .

[19]  Sven Wanka,et al.  New module design with 4-junction solar cells for high efficiencies , 2015 .

[20]  Takashi Koida,et al.  High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design , 2015 .

[21]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[22]  M. Green,et al.  40% efficient sunlight to electricity conversion , 2015 .

[23]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[24]  Naomi Shida,et al.  Organic photovoltaic module development with inverted device structure , 2015 .

[25]  Eric Guiot,et al.  Four-junction wafer bonded concentrator solar cells , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[26]  Tatsuya Takamoto,et al.  Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[27]  D. C. Law,et al.  35.8% space and 38.8% terrestrial 5J direct bonded cells , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[28]  H. Sugimoto High efficiency and large volume production of CIS-based modules , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[29]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[30]  M. Topič,et al.  Ageing of DSSC studied by electroluminescence and transmission imaging , 2013 .

[31]  Linlin Yang,et al.  New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[32]  Frederik C. Krebs,et al.  Stability and Degradation of Organic and Polymer Solar Cells: Krebs/Stability and Degradation of Organic and Polymer Solar Cells , 2012 .

[33]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[34]  Suren A. Gevorgyan,et al.  The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices , 2012 .

[35]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[36]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[37]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[38]  I. Sakata,et al.  Japan's New National R&D Program for Photovoltaics , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[39]  A. Jäger-Waldau R&D Roadmap for PV. , 2004 .

[40]  A Jaeger Waldau,et al.  PVNET: European Roadmap for PV R&D. R&D for PV Products Generating Clean Electricity. , 2004 .

[41]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[42]  Rommel Noufi,et al.  A 21.5% efficient Cu(In,Ga)Se2 thin‐film concentrator solar cell , 2002 .

[43]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[44]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[45]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .