Speedup of Iterated Quantum Search by Parallel Performance

Given a sequence f1(x1), f2(x1, x2), . . . , fk(x1, . . . , xk) of Boolean functions, each of which fi takes the value 1 in a single point of the form x 0 , x 0 , . . . , x 0 , i = 1,2, . . . , k. A length of all x 0 is n, N = 2 n . It is shown how to find x 0 (k ≥ 2) using kπ √ N 4 √ 2 simultaneous evaluations of functions of the form fi, fi+1 with an error probability of order k/ √ N which is √ 2 times as fast as by the k sequential applications of Grover algorithm for the quantum search. Evolutions of amplitudes in parallel quantum computations are approximated by systems of linear differential equations. Some advantage of simultaneous evaluations of all f1, . . . fk are discussed.

[1]  Lov K. Grover A fast quantum mechanical algorithm for estimating the median , 1996, quant-ph/9607024.

[2]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[3]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[4]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[5]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[6]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[7]  D. A. Ross A Modification of Grover's Algorithm as a Fast Database Search , 1998 .

[8]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[9]  Wim van Dam,et al.  Quantum Oracle Interrogation: Getting All Information for Almost Half the Price , 1999 .

[10]  E. Farhi,et al.  Quantum Mechanical Square Root Speedup in a Structured Search Problem , 1997, quant-ph/9711035.

[11]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[12]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[13]  Yuri Ozhigov,et al.  Quantum Computers Speed Up Classical with Probability Zero , 1998, quant-ph/9803064.

[14]  Quantum entanglements and entangled mutual entropy , 1998, quant-ph/9812082.

[15]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[16]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[17]  Markus Grassl,et al.  Generalized Grover Search Algorithm for Arbitrary Initial Amplitude Distribution , 1998, QCQC.

[18]  V. Maslov,et al.  Nondigital Implementation of the Arithmetic of Real Numbers , 1999, quant-ph/9904025.

[19]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[20]  V. Maslov,et al.  Nondigital Implementation of Real Numbers' Arithmetic by Means of Quantum Computer Media , 1999 .

[21]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[23]  John Watrous,et al.  On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[24]  I PaulBenioff Quantum Mechanical Hamiltonian Models of Turing Machines , 1982 .

[25]  Y. Ozhigov Lower bounds of a quantum search for an extreme point , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Barenco,et al.  Approximate quantum Fourier transform and decoherence. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  N. S. Barnett,et al.  Private communication , 1969 .

[28]  B. M. Terhal,et al.  Single quantum querying of a database , 1997 .

[29]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[31]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[32]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[33]  Jonathan A. Jones,et al.  Implementation of a Quantum Search Algorithm on a Nuclear Magnetic Resonance Quantum Computer , 1998 .

[34]  A. Holevo Coding Theorems for Quantum Channels , 1998, quant-ph/9809023.

[35]  A.Yu.Kitaev Quantum measurements and the Abelian Stabilizer Problem , 1995, quant-ph/9511026.

[36]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[37]  Barbara M. Terhal,et al.  Superfast quantum algorithms for coin weighing and binary search problems , 1997 .

[38]  M. Sipser,et al.  Limit on the Speed of Quantum Computation in Determining Parity , 1998, quant-ph/9802045.

[39]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[40]  Raymond Laflamme,et al.  Quantum Computers, Factoring, and Decoherence , 1995, Science.

[41]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[42]  R. Penrose,et al.  Shadows of the Mind , 1994 .

[43]  Alexander Semenovich Holevo,et al.  Quantum coding theorems , 1998 .

[44]  Mike Mannion,et al.  Complex systems , 1997, Proceedings International Conference and Workshop on Engineering of Computer-Based Systems.

[45]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[46]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[47]  Richard Jozsa Searching in Grover's Algorithm , 1999 .

[48]  T. Hogg A framework for structured quantum search , 1997, quant-ph/9701013.

[49]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.