Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations

The impact of quantum decoherence and zero point motion on non-adiabatic transition rates in condensed matter systems is studied in relation to non-adiabatic (NA) molecular dynamics (MD) techniques. Both effects, and decoherence in particular, strongly influence the transition rate, while neither is accounted for by straightforward quantum-classical approaches. Quantum corrections to the quantum-classical results are rigorously introduced based on Kubo’s generating function formulation of Fermi’s Golden rule and the frozen Gaussian approximation for the nuclear wave functions. The development provides a one-to-one correspondence between the decoherence function and the Franck–Condon factor. The decoherence function defined in this paper corrects an error in our previous work [J. Chem. Phys. 104, 5942 (1996)]. The relationship between the short time approach and the real time NA MD is investigated and a specific prescription for incorporating quantum decoherence into NA simulations is given. The proposed s...

[1]  P. Rossky,et al.  An Exploration of the Relationship between Solvation Dynamics and Spectrally Determined Solvent Response Functions by Computer Simulation , 1995 .

[2]  A. Nitzan,et al.  Numerical evaluation of golden rule rates for condensed phase processes , 1994 .

[3]  O. Prezhdo,et al.  Mixing Quantum and Classical Mechanics , 1996, quant-ph/9610016.

[4]  Eric J. Heller,et al.  Frozen Gaussians: A very simple semiclassical approximation , 1981 .

[5]  Abraham Nitzan,et al.  Multiconfiguration time-dependent self-consistent field approximations in the numerical solution of quantum dynamical problems , 1991 .

[6]  R. M. Stratt,et al.  Short-Time Dynamics of Solvation: Relationship between Polar and Nonpolar Solvation , 1996 .

[7]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[8]  P. Barbara,et al.  Ultrafast Transient Absorption Spectroscopy of the Solvated Electron in Water , 1994 .

[9]  D. Coker,et al.  Methods for molecular dynamics with nonadiabatic transitions , 1994, chem-ph/9408002.

[10]  F. H. Long,et al.  Femtosecond studies of electron-cation dynamics in neat water: The effects of isotope substitution , 1989 .

[11]  R. Silbey,et al.  Nonequilibrium photoinduced electron transfer , 1995 .

[12]  D. J. Diestler Analysis of infrared absorption line shapes in condensed media: Application of a classical limit of Heisenberg’s equations of motion , 1983 .

[13]  Joshua Jortner,et al.  Intramolecular Radiationless Transitions , 1968 .

[14]  P. Barbara,et al.  Femtosecond absorption anisotropy of the aqueous solvated electron , 1994 .

[15]  P. Rossky,et al.  THE ISOTOPE EFFECT IN SOLVATION DYNAMICS AND NONADIABATIC RELAXATION : A QUANTUM SIMULATION STUDY OF THE PHOTOEXCITED SOLVATED ELECTRON IN D2O , 1996 .

[16]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[17]  W. Gelbart,et al.  Nonradiative electronic relaxation under collision-free conditions , 1977 .

[18]  A. Staib,et al.  Molecular dynamics simulation of an excess charge in water using mobile Gaussian orbitals , 1995 .

[19]  William H. Miller Dynamics of Molecular Collisions , 1976 .

[20]  Richard A. Friesner,et al.  Stationary phase surface hopping for nonadiabatic dynamics: Two-state systems , 1994 .

[21]  E. Heller Quantum corrections to classical photodissociation models , 1978 .

[22]  Abraham Nitzan,et al.  Semiclassical evaluation of nonadiabatic rates in condensed phases , 1993 .

[23]  Fabrice Rappaport,et al.  Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy , 1993, Nature.

[24]  Lu,et al.  Femtosecond studies of the presolvated electron: An excited state of the solvated electron? , 1990, Physical review letters.

[25]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  J. Onuchic,et al.  Classical and quantum pictures of reaction dynamics in condensed matter: resonances, dephasing, and all that , 1988 .

[27]  Benjamin J. Schwartz,et al.  Aqueous solvation dynamics with a quantum mechanical Solute: Computer simulation studies of the photoexcited hydrated electron , 1994 .

[28]  Mark A. Ratner,et al.  Quantum Mechanics in Chemistry , 1993 .

[29]  Ryogo Kubo,et al.  Application of the Method of Generating Function to Radiative and Non-Radiative Transitions of a Trapped Electron in a Crystal , 1955 .

[30]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[31]  B. Berne,et al.  On the use of semiclassical dynamics in determining electronic spectra of Br2 in an Ar matrix , 1985 .

[32]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[33]  E. Heller Time dependent variational approach to semiclassical dynamics , 1976 .

[34]  Friedrichs,et al.  Solvation dynamics of the hydrated electron: A nonadiabatic quantum simulation. , 1991, Physical review letters.

[35]  P. Rossky,et al.  Kinetic analysis of computer experiments on electron hydration dynamics , 1993 .

[36]  P. Ehrenfest Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik , 1927 .

[37]  P. Rossky,et al.  Equilibrium structure, fluctuations, and spectroscopy of a solvated electron in methanol , 1997 .

[38]  P. Rossky,et al.  An electron–water pseudopotential for condensed phase simulation , 1987 .

[39]  R. Silbey,et al.  Variational treatment of a harmonic oscillator coupled to a dissipative heat bath , 1987 .

[40]  P. Rossky,et al.  Quantum dynamics simulation with approximate eigenstates , 1995 .

[41]  G. Fleming,et al.  Primary steps of photosynthesis , 1994 .

[42]  P. Rossky,et al.  Quantum decoherence and the isotope effect in condensed phase nonadiabatic molecular dynamics simulations , 1996 .

[43]  Solvent Mode Participation in the Nonradiative Relaxation of the Hydrated Electron , 1996, chem-ph/9604003.

[44]  P. Rossky,et al.  The role of solvent intramolecular modes in excess electron solvation dynamics , 1993 .

[45]  Real time path integral methods for a system coupled to an anharmonic bath , 1994 .

[46]  A. Antonetti,et al.  Electron hydration in pure liquid water. Existence of two nonequilibrium configurations in the near-infrared region , 1991 .

[47]  R. Egger,et al.  DISSIPATIVE THREE-STATE SYSTEM AND THE PRIMARY ELECTRON TRANSFER IN THE BACTERIAL PHOTOSYNTHETIC REACTION CENTER , 1994 .

[48]  E. Heller,et al.  Time‐dependent theory of Raman scattering , 1979 .

[49]  Branka M. Ladanyi,et al.  The short‐time dynamics of molecular liquids. Instantaneous‐normal‐mode theory , 1992 .

[50]  Schwartz,et al.  Hydrated electrons as a probe of local anisotropy: Simulations of ultrafast polarization-dependent spectral hole burning. , 1994, Physical review letters.

[51]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[52]  Martin,et al.  Excess electrons in liquid water: First evidence of a prehydrated state with femtosecond lifetime. , 1987, Physical review letters.

[53]  F. H. Long,et al.  Intensity dependent geminate recombination in water , 1991 .

[54]  R. Hochstrasser,et al.  The real‐time intramolecular electronic excitation transfer dynamics of 9’,9‐bifluorene and 2’,2‐binaphthyl in solution , 1993 .

[55]  A. Antonetti,et al.  Hydrogen/deuterium isotope effects on femtosecond electron reactivity in aqueous media , 1991 .

[56]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[57]  P. Barbara,et al.  Vibrational Modes and the Dynamic Solvent Effect in Electron and Proton Transfer , 1992, Science.

[58]  Joel S. Bader,et al.  Quantum and classical relaxation rates from classical simulations , 1994 .

[59]  P. Wolynes Imaginary time path integral Monte Carlo route to rate coefficients for nonadiabatic barrier crossing , 1987 .

[60]  P. Barbara,et al.  Ultrafast transient‐absorption spectroscopy of the aqueous solvated electron , 1993 .

[61]  P. Rossky,et al.  Pump–probe spectroscopy of the hydrated electron: A quantum molecular dynamics simulation , 1994 .

[62]  Robert A. Harris,et al.  Variational calculation of the tunneling system interacting with a heat bath. II. Dynamics of an asymmetric tunneling system , 1985 .

[63]  M. Klein,et al.  Optimization of a distributed Gaussian basis set using simulated annealing: Application to the adiabatic dynamics of the solvated electron , 1988 .

[64]  R. Hochstrasser,et al.  Coherence effects in the anisotropy of optical experiments , 1993 .

[65]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[66]  P. Rossky,et al.  Electron Hydration Dynamics: Simulation Results Compared to Pump and Probe Experiments , 1995 .

[67]  N. Mott On the Theory of Excitation by Collision with Heavy Particles , 1931, Mathematical Proceedings of the Cambridge Philosophical Society.

[68]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[69]  Walter Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[70]  Sawada,et al.  Mean-trajectory approximation for charge- and energy-transfer processes at surfaces. , 1985, Physical review. B, Condensed matter.

[71]  G. D. Billing,et al.  Classical Path Method in Inelastic and Reactive Scattering , 1994 .

[72]  P. Wolynes,et al.  Rate theories and puzzles of hemeprotein kinetics. , 1985, Science.

[73]  P. Rossky,et al.  Quantum decoherence: a consistent histories treatment of condensed-phase non-adiabatic quantum molecular dynamics , 1997 .

[74]  P. Rossky,et al.  Mean-field molecular dynamics with surface hopping , 1997 .

[75]  P. Rossky,et al.  Dynamic Elements of Transient Spectral Hole Burning of the Hydrated Electron , 1994 .

[76]  R. D. Gregory,et al.  Molecular interactions by the time-dependent Hartree method , 1964 .

[77]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[78]  P. Rossky,et al.  Dynamics of chemical processes in polar solvents , 1994, Nature.

[79]  J. Steinfeld Molecules and radiation , 1974 .

[80]  P. Rossky,et al.  Quantum decoherence in mixed quantum‐classical systems: Nonadiabatic processes , 1995 .

[81]  Richard A. Friesner,et al.  Nonadiabatic processes in condensed matter: semi-classical theory and implementation , 1991 .