Behavior and Characterization of Kinetically Involved Chemisorbed Intermediates in Electrocatalysis of Gas Evolution Reactions

Publisher Summary This chapter discusses the role of chemisorbed intermediates in a number of well-known electrocatalytic reactions and how their behavior at electrode surfaces can be experimentally deduced by electrochemical and physicochemical means. The electrolytic gas evolution reactions are highlighted. The chapter describes the methods for the characterization of the adsorption behavior of the intermediates that are the kinetically involved species in the main pathway of the respective reactions rather than strongly adsorbed byproducts that may, in some cases, importantly inhibit the overall reaction. Several important features of electrode processes that differ from regular heterogeneously catalyzed reactions must be recognized, such as chemisorbed intermediates are often generated from a reactant in solution by an electron-charge-transfer event, for example, the adsorption of H from H3O+ ion, plus an electron, resulting in a direct potential dependence of the rate of the production of such an intermediate.

[1]  L. Brewer,et al.  Erratum to: Transition metal alloys of extraordinary stability; An example of generalized Lewis-acid-base interactions in metallic systems , 1973 .

[2]  P. D. Ellis,et al.  Carbon-13 cross-polarization magic-angle-spinning NMR study of butylamine adsorbed on .gamma.-alumina: characterization of surface acid sites , 1981 .

[3]  A. Bewick,et al.  Optical studies of the electrode-electrolyte solution interphase using reflectance methods , 1975 .

[4]  B. Conway,et al.  Surface oxidation and reduction of platinum electrodes: Coverage, kinetic and hysteresis studies , 1968 .

[5]  B. Conway,et al.  Behavior of overpotential—deposited species in Faradaic reactions—II. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes , 1987 .

[6]  B. Conway,et al.  Overpotential decay behavior—I. Complex electrode reactions involving adsorption , 1976 .

[7]  A. Damjanović,et al.  Oxygen Evolution at Platinum Electrodes in Alkaline Solutions: I . Dependence on Solution pH and Oxide Film Thickness , 1986 .

[8]  C. Iwakura,et al.  Embrittlement of LaNi5-type alloy electrodes during the cathodic evolution of hydrogen , 1982 .

[9]  S. Trasatti,et al.  The point of zero charge of Co3O4: Effect of the preparation procedure , 1984 .

[10]  A. Anderson,et al.  Oxygen Evolution on a SrFeO3 Anode Mechanistic Considerations from Molecular Orbital Theory , 1989 .

[11]  R. Parsons,et al.  The effect of strong acid on the reactions of hydrogen and oxygen on the noble metals. A study using cyclic voltammetry and a new teflon electrode holder , 1972 .

[12]  L. Brewer,et al.  Bonding and structures of transition metals. , 1968, Science.

[13]  J. L. Ord,et al.  The Anodic Oxidation of Platinum: Evidence for a High‐Field Ionic Conduction Mechanism , 1971 .

[14]  M. A. Sattar,et al.  Role of the transfer coefficient in electrocatalysis: Applications to the H2 and O2 evolution reactions and the characterization of participating adsorbed intermediates☆ , 1987 .

[15]  G. Ertl,et al.  Kinetics of nitrogen adsorption on Fe(111) , 1982 .

[16]  N. Hush Adiabatic Rate Processes at Electrodes. I. Energy-Charge Relationships , 1958 .

[17]  R. Moss,et al.  Field-emission studies of the adsorption of chlorine and the dissociation of carbon-chlorine compounds on tungsten , 1966 .

[18]  B. Conway,et al.  Kinetic theory of the open-circuit potential decay method for evaluation of behaviour of adsorbed intermediates. Analysis for the case of the H2 evolution reaction , 1987 .

[19]  B. Conway,et al.  Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis , 1986 .

[20]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[21]  J. Schultze,et al.  The influence of the tunnel probability on the anodic oxygen evolution and other redox reactions at oxide covered platinum electrodes , 1973 .

[22]  A. Bewick,et al.  Studies of adsorbed hydrogen on platinum cathodes using modulated specular reflectance spectroscopy , 1973 .

[23]  W. Wynne-Jones,et al.  The behaviour of the lead dioxide electrode. Part 3.—Overvoltage during oxygen evolution in H2SO4 , 1954 .

[24]  G. Rao,et al.  Electrical conduction in metal oxides , 1970 .

[25]  B. Conway,et al.  Potentiostatic and potentiodynamic studies on the Kolbe electro-synthesis , 1966 .

[26]  V. Henrich The nature of transition-metal-oxide surfaces , 1983 .

[27]  Ralph E. White,et al.  Comprehensive Treatise of Electrochemistry , 1981 .

[28]  V. Ponec,et al.  Role of chemisorption in simple catalytic reactions , 1966 .

[29]  A. Kobussen Oxygen evolution on La0.5Ba0.5CoO3 , 1981 .

[30]  J. Goodenough Localized vs Collective Descriptions of Magnetic Electrons , 1968 .

[31]  Linus Pauling,et al.  A resonating-valence-bond theory of metals and intermetallic compounds , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  P. Sherwood,et al.  X-ray photoelectron spectroscopic studies of oxide films on platinum and gold electrodes , 1975 .

[33]  J. Bockris,et al.  The Relative Electrocatalytic Activity of Noble Metals in the Oxidation of Ethylene , 1964 .

[34]  M. Miles Evaluation of electrocatalysts for water electrolysis in alkaline solutions , 1975 .

[35]  G. Kreysa,et al.  Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution , 1986 .

[36]  O. J. Murphy,et al.  The important role of surface area in the electrochemical behaviour of RuO2 electrodes , 1977 .

[37]  A. Damjanović,et al.  Anodic Oxide Films as Barriers to Charge Transfer in O 2 Evolution at Pt in Acid Solutions , 1976 .

[38]  H. Gerischer Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern , 1960 .

[39]  M. Enyo,et al.  Amorphous PdZr alloys for water electrolysis cathode materials , 1983 .

[40]  C. Iwakura,et al.  Some oxide catalysts for the anodic evolution of chlorine: reaction mechanism and catalytic activity , 1978 .

[41]  M. Morita,et al.  The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate , 1977 .

[42]  B. Conway,et al.  On the mechanism of the chlorine evolution reaction on Pt electrodes: Reply to the comments of T. Yokoyama and M. Enyo , 1982 .

[43]  C. Mari,et al.  Physicochemical characterization of Co3O4 prepared by thermal decomposition I: Phase composition and morphology , 1983 .

[44]  A. Kuhn,et al.  The Kinetics of Chlorine Evolution and Reduction on Titanium‐Supported Metal Oxides Especially RuO2 and IrO2 , 1973 .

[45]  S. Trasatti,et al.  Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes , 1974 .

[46]  S. Trasatti,et al.  Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour , 1971 .

[47]  N. Hush,et al.  Adiabatic theory of outer sphere electron-transfer reactions in solution , 1961 .

[48]  M. Jakšić Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory☆ , 1987 .

[49]  J. Bockris,et al.  Fuel cells : their electrochemistry , 1969 .

[50]  A. Kuznetsov,et al.  Theory of hydrogen-ion discharge on metals: Case of high overvoltages , 1968 .

[51]  B. Conway,et al.  Electrocatalytic effect of the oxide film at Pt anodes on Cl• recombination kinetics in chlorine evolution , 1979 .

[52]  H. Beer The Invention and Industrial Development of Metal Anodes , 1980 .

[53]  L. Janssen,et al.  The open-circuit decay behaviour of chlorine-evolving electrodes , 1980 .

[54]  G. Broers,et al.  The oxygen evolution on La0.5Ba0.5CoO3: Theoretical impedance behaviour for a multi-step mechanism involving two adsorbates , 1981 .

[55]  E. Schmidt,et al.  Chronoamperometrische untersuchung von bleiniederschlägen auf goldelektroden , 1967 .

[56]  R. Marcus Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment , 1964 .

[57]  M. N. Mahmood,et al.  Low overvoltage electrocatalysts for hydrogen evolving electrodes , 1981 .

[58]  P. Rüetschi,et al.  Influence of Electrode Material on Oxygen Overvoltage: A Theoretical Analysis , 1955 .

[59]  Nicholas Winograd,et al.  Electron spectroscopy of platinum-oxygen surfaces and application to electrochemical studies , 1971 .

[60]  D. Gilroy Oxide growth at platinum electrodes in H2SO4 at potentials below 1.7 V , 1976 .

[61]  A. Lasia Applications of the potential step charging technique to the hydrogen evolution reaction , 1989 .

[62]  V. Lazarev,et al.  Electrical conductivity of platinum metal — nonplatium metal double oxides , 1978 .

[63]  S. Ardizzone,et al.  Surface Structure of Ruthenium Dioxide Electrodes and Kinetics of Chlorine Evolution , 1982 .

[64]  J. Hupp,et al.  The driving-force dependence of electrochemical rate parameters: origins of anodic-cathodic asymmetries for metal-aquo redox couples , 1984 .

[65]  B. Conway,et al.  Electrochemical surface science: The study of monolayers of ad-atoms and solvent molecules at charged metal interfaces , 1984 .

[66]  Linus Pauling,et al.  Atomic Radii and Interatomic Distances in Metals , 1947 .

[67]  Ernest Yeager,et al.  Electrocatalysts for O2 reduction , 1984 .

[68]  M. W. Breiter,et al.  Voltammetric study of halide ion adsorption on platinum in perchloric acid solutions , 1963 .

[69]  B. Conway,et al.  Electrode Kinetic Aspects of the Kolbe Reaction , 1967 .

[70]  Kenji Suzuki,et al.  Amorphous Ni-Ti and Ni-Zr alloys for water electrolysis cathode materials. , 1983 .

[71]  G. R. Srinivasan,et al.  Kinetics of Lateral Autodoping in Silicon Epitaxy , 1978 .

[72]  J. Bockris,et al.  Ellipsometric study of oxygen-containing films on platinum electrodes , 1964 .

[73]  L. Niedrach Galvanostatic and Volumetric Studies of Hydrocarbons Adsorbed on Fuel Cell Anodes , 1964 .

[74]  J. Bockris,et al.  Photoelectrocatalysis on silicon in solar light , 1983 .

[75]  D. B. Hibbert,et al.  A Mechanistic Study of Oxygen Evolution on NiCo2 O 4 I . Formation of Higher Oxides , 1982 .

[76]  S. Trasatti,et al.  On some debated aspects of the behaviour of RuO2 film electrodes , 1978 .

[77]  S. Barnartt The Oxygen‐Evolution Reaction at Gold Anodes I . Accuracy of Overpotential Measurements , 1959 .

[78]  R. Marcus,et al.  Dissociation and Isomerization of Vibrationally Excited Species. II. Unimolecular Reaction Rate Theory and Its Application , 1962 .

[79]  Geoffrey C. Allen,et al.  X-ray photoelectron spectroscopy of adsorbed oxygen and carbonaceous species on platinum electrodes , 1974 .

[80]  F. R. V. Buren,et al.  Oxygen evolution on LaCoO3-type electrodes , 1979 .

[81]  N. Singh,et al.  Viscosity B-coefficients for potassium thiocyanate in N,N-dimethylacetamidewater mixtures at 25°C , 1977 .

[82]  M. Miles,et al.  Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies , 1976 .

[83]  T. Wolfram,et al.  Concepts of Surface States and Chemisorption on d-Band Perovskites , 1980 .

[84]  Y. Choquette,et al.  Leaching of Raney nickel composite-coated electrodes , 1990 .

[85]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[86]  A. Damjanović,et al.  OXYGEN ADSORPTION RELATED TO THE UNPAIRED d-ELECTRONS IN TRANSITION METALS , 1963 .

[87]  E. O'Sullivan,et al.  Chapter 3 Reactions at Metal Oxide Electrodes , 1988 .

[88]  B. Conway,et al.  Surface electrochemistry of the anodic N2 generation reaction at Pt and Au, and the discovery of cathodic N2 evolution , 1988 .

[89]  N. Winograd,et al.  X-Ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces , 1974 .

[90]  P. Lu,et al.  Effect of Temperature on Electrode Kinetic Parameters for Hydrogen and Oxygen Evolution Reactions on Nickel Electrodes in Alkaline Solutions , 1976 .

[91]  M. Trudeau,et al.  Electrochemical and Electrocatalytic Behavior of an Iron‐Base Amorphous Alloy in Alkaline Solutions at 70°C , 1989 .

[92]  J. Butler,et al.  Electrometric titrations with oxygen electrodes , 1933 .

[93]  B. Conway,et al.  Modification of Apparent Electrocatalysis for Anodic Chlorine Evolution on Electrochemically Conditioned Oxide Films at Iridium Anodes , 1981 .

[94]  C. Mesters,et al.  Oxygen evolution on La0.5Ba0.5CoO3 in alkaline solutions. Steady-state and reaction order experiments , 1980 .

[95]  P. Stonehart,et al.  Electrode reactions of hydrazine in aqueous solutions , 1965 .

[96]  P. Stoltze,et al.  A description of the high‐pressure ammonia synthesis reaction based on surface science , 1987 .

[97]  A. Damjanović,et al.  Oxygen Evolution at Platinum Electrodes in Alkaline Solutions II . Mechanism of the Reaction , 1986 .

[98]  J. Nørskov,et al.  An interpretation of the high-pressure kinetics of ammonia synthesis based on a microscopic model , 1988 .

[99]  R. Parsons,et al.  Calculation of the energy of activation of discharge of hydrogen ions at metal electrodes , 1951 .

[100]  J. Augustynski,et al.  X‐Ray Photoelectron Spectroscopic Studies of RuO2 ‐ Based Film Electrodes , 1978 .

[101]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[102]  N. Mott,et al.  The interface between a metal and an electrolyte , 1961 .

[103]  M. Salomon,et al.  THE ANODIC OXIDATION OF AMMONIA AT PLATINUM BLACK ELECTRODES IN AQUEOUS KOH ELECTROLYTE , 1963 .

[104]  M. Breiter Electrochemical Characterization of the Surface Composition of Heterogeneous Platinum—Gold Alloys , 1965 .

[105]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[106]  Rogars Parsons Electrocatalysis and the nature of the electrode , 1969 .

[107]  H. Tada,et al.  Chlorine distribution in thermally decomposed ruthenium, iridium and platinum oxide films , 1977 .

[108]  D. Turnbull,et al.  Formation, stability and structure of palladium-silicon based alloy glasses , 1969 .

[109]  A. Damjanović,et al.  Kinetics of the Extended Growth of Anodic Oxide Films at Platinum in H 2 SO 4 Solution , 1976 .

[110]  P. Sherwood,et al.  X-ray photoelectron spectroscopic studies of electrode surfaces using a new controlled transfer technique , 1979 .

[111]  P. Rock Special Topics in Electrochemistry , 1978 .

[112]  M. N. Mahmood,et al.  Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions , 1984 .

[113]  M. Fleischmann,et al.  Fluidized bed electrodes Part IV. Electrodeposition of copper in a fluidized bed of copper-coated spheres , 1971 .

[114]  G. Kokkinidis Underpotential deposition and electrocatalysis , 1986 .

[115]  J. Hoare,et al.  The electrochemistry of oxygen , 1968 .

[116]  J. A. Harrison,et al.  The mechanism of oxidation of Cl− on platinum and RuO2/TiO2 electrodes, and the reduction of Cl2 on platinum , 1977 .

[117]  G. Broers,et al.  The oxygen evolution on La0.5Ba0.5CoO3: Passivation processes , 1982 .

[118]  M. Jakšić Electrocatalysis of hydrogen evolution in the light of the brewer—engel theory for bonding in metals and intermetallic phases , 1984 .

[119]  R. Schulz,et al.  Solid-state reaction and electrocatalytic activity of rapidly quenched Zr50Co30Ni20 alloys , 1988 .

[120]  M. R. Tarasevich,et al.  Electrocatalytic Properties of Metalloporphins at the Interface , 1981 .

[121]  M. Jakšić,et al.  Synergetic electrocatalytic effect of d metals for the hydrogen evolution reaction on gold substrates , 1984 .

[122]  R. Gurney The Quantum Mechanics of Electrolysis , 1931 .

[123]  R. Woods The surface composition of platinum-gold alloys , 1971 .

[124]  J. Moffat,et al.  Theoretical Aspects of Heterogeneous Catalysis , 1990 .

[125]  M. Enyo,et al.  On the mechanism of the chlorine evolution reaction on Pt electrode: Comment on the paper by B.E. Conway and D.M. Novak , 1982 .

[126]  A. Tseung,et al.  The Role of the Lower Metal Oxide/Higher Metal Oxide Couple in Oxygen Evolution Reactions , 1984 .

[127]  Hartmut Wendt,et al.  Materials research and development of electrocatalysts for alkaline water electrolysis , 1989 .

[128]  B. Conway,et al.  Electrolytic Hydrogen Evolution Kinetics and Its Relation to the Electronic and Adsorptive Properties of the Metal , 1957 .

[129]  J. Butler,et al.  The rate of decay of hydrogen and oxygen overvoltages , 1933 .

[130]  I. Kadija Chlorine Saturation Levels in the Electrolyte Adjacent to the Anode Surface Relationship to the Polarization Curves , 1980 .

[131]  B. Conway,et al.  Evaluation of electroactive intermediate states in anodic O2 evolution at chemically formed nickel oxide: Comparison with behaviour at nickel metal anodes , 1987 .

[132]  C. Iwakura,et al.  The anodic evolution of oxygen on Co3O4 film electrodes in alkaline solutions , 1981 .

[133]  G. Bond Adsorption and co-ordination of unsaturated hydrocarbons with metal surfaces and metal atoms , 1966 .

[134]  I. Parker,et al.  Extrapolation of the kinetics of model ammonia synthesis catalysts to industrially relevant temperatures and pressures , 1985 .

[135]  D. N. Buckley,et al.  The oxygen electrode. Part 5.—Enhancement of charge capacity of an iridium surface in the anodic region , 1975 .

[136]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[137]  L. Brossard,et al.  In situ activation of cobalt cathodes in alkaline water electrolysis , 1988 .

[138]  M. Enyo,et al.  The reaction order and general equations for electrode kinetics , 1971 .

[139]  S. Pizzini,et al.  Preparation, structure and electrical properties of thick ruthenium dioxide films , 1972 .

[140]  J. Bockris,et al.  Lanthanum Nickelate as Electrocatalyst: Oxygen Evolution , 1982 .

[141]  B. Conway,et al.  Experimental evaluation of adsorption behaviour of intermediates in anodic oxygen evolution at oxidized nickel surfaces , 1987 .

[142]  A. Bewick,et al.  Spectroscopic identification of the adsorbed intermediate in hydrogen evolution on platinum , 1988 .

[143]  M. Selvaratnam,et al.  Mechanism of the hydrogen-evolution reaction on nickel in alkaline solutions by the determination of the degree of coverage , 1960 .

[144]  Adam Heller,et al.  Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [ p -type InP(Ru)]/HCl-KCl/Pt(Rh) Cell , 1981 .

[145]  L. Brossard,et al.  Activation in situ de la cathode de nickel par le molybdate de sodium , 1988 .

[146]  G. Broers,et al.  The oxygen evolution on La0.5Ba0.5CoO3: Overpotential decay behaviour : Theory and experimental results , 1982 .

[147]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[148]  P. Rüetschi,et al.  Oxygen Overvoltage and Electrode Potentials of Alpha ‐ and Beta ‐ PbO2 , 1959 .

[149]  M. J. Weaver Activation parameters for simple electrode reactions. Application to the elucidation of ion-solvent interactions in the transition state for heterogeneous electron transfer , 1979 .

[150]  J. Hoare On the reduction of oxygen at platinum—oxygen alloy diaphragm electrodes , 1975 .

[151]  L. Janssen,et al.  Electrolysis of acidic NaCl solution with a graphite anode—I. The graphite electrode , 1969 .

[152]  N. Sato,et al.  Reaction mechanism of anodic oxygen evolution on nickel in sulphate solutions , 1965 .

[153]  D. D. Eley,et al.  Conversion and equilibration rates of hydrogen on nickel , 1966 .

[154]  B. Conway,et al.  Competitive adsorption and state of charge of halide ions in monolayer oxide film growth processes at Pt anodes , 1981 .

[155]  C. V. Krishnan,et al.  Laser-induced temperature-jump coulostatics for the investigation of heterogeneous rate processes: Theory and application , 1988 .

[156]  E. Sato,et al.  Oxygen Evolution on La1 − x Sr x CoO3 Electrodes in Alkaline Solutions , 1980 .

[157]  V. S. Bagotzky,et al.  Adsorption of anions on smooth platinum electrodes , 1970 .

[158]  B. Tilak,et al.  Techniques for Characterizing Porous Electrodes I : Determination of the Double Layer Capacity , 1977 .

[159]  L. Neelemans,et al.  Etude du fonctionnement des potentiostats: Application a la passivation des metaux , 1966 .

[160]  M. Wohlfahrt‐Mehrens,et al.  Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry , 1987 .

[161]  W. Visscher,et al.  Oxygen evolution on NiCo2O4 electrodes , 1985 .

[162]  C. Iwakura,et al.  The anodic evolution of oxygen on platinum oxide electrode in alkaline solutions , 1976 .

[163]  S. Bruckenstein,et al.  Electrochemical mass spectrometry. Part 1.—Preliminary studies of propane oxidation on platinum , 1973 .

[164]  J. Augustynski,et al.  Application of Auger and Photoelectron Spectroscopy to Electrochemical Problems , 1979 .

[165]  B. Conway,et al.  The electrochemical study of multiple-state adsorption in monolayers , 1981 .

[166]  B. J. Bowles Formation of monolayers of copper on platinum electrodes , 1970 .

[167]  C. Iwakura,et al.  Electrochemical behaviour of the ruthenium oxide electrode prepared by the thermal decomposition method , 1977 .

[168]  N. Takezawa,et al.  The shift of CH stretching band of surface alcoholate on metal oxides , 1972 .

[169]  W. Visscher,et al.  The anodic behaviour of iridium , 1974 .

[170]  J. Bockris,et al.  Mechanism of oxygen evolution on perovskites , 1983 .

[171]  L. Brossard,et al.  In situ activation by sodium molybdate on various metallic substrates during alkaline water electrolysis , 1989 .

[172]  B. Conway,et al.  HYDRIDE FORMATION AT NI-CONTAINING GLASSY-METAL ELECTRODES DURING THE H2 EVOLUTION REACTION IN ALKALINE SOLUTIONS , 1990 .

[173]  E. Sato,et al.  Electrochemical properties of the single crystal La0.7Pb0.3MnO3 electrode , 1980 .

[174]  M. Breiter Anodic oxidation of formic acid on platinum—I. Adsorption of formic acid, oxygen, and hydrogen in perchloric acid solutions , 1963 .

[175]  T. Hoar The mechanism of the oxygen electrode , 1933 .

[176]  J. A. Harrison,et al.  Chlorine and oxygen evolution on various compositions of RuO2/TiO2 electrodes , 1978 .

[177]  S. Trasatti,et al.  Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions , 1975 .

[178]  Allen J. Bard,et al.  Encyclopedia of Electrochemistry of the Elements , 1978 .

[179]  P. Żółtowski The admittance of a simple electrocatalytic process coupled with an additional electrochemical adsorption reaction , 1988 .

[180]  J. Butler Hydrogen overvoltage and the reversible hydrogen electrode , 1936 .

[181]  A. Anderson The influence of electrochemical potential on chemistry at electrode surfaces modeled by MO theory , 1990 .

[182]  B. Conway,et al.  The mechanism of electrolytic metal deposition , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[183]  E. Gileadi,et al.  Anodic oxidation of unsaturated hydrocarbons on platinized electrodes , 1965 .

[184]  J. O'm. Bockris,et al.  On the structure of charged interfaces , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[185]  M. Grunze,et al.  Interaction of nitrogen with iron surfaces: I. Fe(100) and Fe(111) , 1977 .

[186]  J. Bockris,et al.  Solid state surface studies of the electrocatalysis of oxygen evolution on perovskites , 1983 .

[187]  B. Conway,et al.  Theory and Principles of Electrode Processes , 1965 .

[188]  A. Anderson,et al.  Structures and reactions of hydronium, water, and hydroxyl on an iron electrode. Potential dependence , 1982 .

[189]  M. Enyo,et al.  Theory of concentration overpotential and applicability of the rotating disk electrode to the analysis of electrode kinetics , 1970 .

[190]  J. Bockris,et al.  Studies of the mechanism of the anodic oxidation of ethylene in acid and alkaline media , 1963 .

[191]  L. Burke,et al.  The oxygen electrode. Part 3.—Inhibition of the oxygen evolution reaction , 1972 .

[192]  A. Damjanović,et al.  The rate constants for oxygen dissolution on bare and oxide-covered platinum☆ , 1966 .

[193]  B. Conway,et al.  Chloride ion adsorption effects in the recombination-controlled kinetics of anodic chlorine evolution at Pt electrodes , 1979 .

[194]  J. Goodenough Covalency Criterion for Localized vs Collective Electrons in Oxides with the Perovskite Structure , 1966 .

[195]  B. Conway,et al.  The state of electrodeposited hydrogen at ruthenium electrodes , 1977 .

[196]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[197]  J. Macdonald Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes , 1987 .

[198]  M. A. Sattar,et al.  Electrochemistry of the nickel-oxide electrode—VII. Potentiostatic step method for study of adsorbed intermediates☆ , 1969 .

[199]  Stoltze,et al.  Bridging the "pressure gap" between ultrahigh-vacuum surface physics and high-pressure catalysis. , 1985, Physical review letters.

[200]  Oronzio De Nora Betriebsverhalten von Quecksilber-Zellen mit maßbeständigen aktivierten Titan-Anoden† , 1971 .

[201]  Brian E. Conway,et al.  ELECTROCHEMISTRY OF THE NICKEL OXIDE ELECTRODE: PART III. ANODIC POLARIZATION AND SELF-DISCHARGE BEHAVIOR , 1962 .

[202]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[203]  R. Parsons The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen , 1958 .

[204]  Brian E. Conway,et al.  Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evaluation of behavior of surface intermediate states at the oxide film , 1990 .

[205]  B. Conway,et al.  Surface electrochemistry of the anodic Cl2 evolution reaction at Pt. Influence of co-deposition of surface oxide species on adsorption of the Cl˙ intermediate , 1990 .

[206]  A. Anderson,et al.  Mechanism of Iron dissolution and passivation in an aqueous environment: Active and transition ranges , 1983 .

[207]  P. Rüetschi,et al.  Hydrogen Overvoltage and Electrode Material. A Theoretical Analysis , 1955 .

[208]  H. Takenouti,et al.  Reaction Model for Iron Dissolution Studied by Electrode Impedance I . Experimental Results and Reaction Model , 1981 .

[209]  H. S. Harned,et al.  The Thermodynamics of Aqueous Potassium Hydroxide Solutions from Electromotive Force Measurements , 1937 .

[210]  J. Schultze,et al.  Inelastische Tunnelprozesse und Halbleitereffekte bei der anodischen Sauerstoffentwicklung an oxidbedecktem Platin , 1977 .

[211]  W. Kauzmann,et al.  The Time Dependence of the Potential in Electrode Reactions , 1952 .

[212]  M. Szklarczyk,et al.  On photoelectrocatalysis of hydrogen and oxygen evolution , 1984 .

[213]  L. Brossard,et al.  Time dependence of the hydrogen discharge at 70°C on nickel cathodes , 1987 .

[214]  B. Conway,et al.  Overpotential decay behavior—II. Generalized treatment for reaction pathways involving discharge, recombination and electrochemical desorption of adsorbed intermediates , 1977 .

[215]  A. Hickling,et al.  Oxygen overvoltage. Part I. The influence of electrode material, current density, and time in aqueous solution , 1947 .

[216]  B. Conway,et al.  Behaviour of surface intermediate states in anodic O2 evolution electrocatalysis at Co3O4 on Ni and Ti substrates , 1987 .

[217]  J. Hoare The Normal Oxygen Potential on Bright Platinum , 1963 .

[218]  B. Conway,et al.  Significance of e.m.f. decay measurements. Applications to the nickel oxide electrode , 1962 .

[219]  W. Visscher,et al.  Multilayer oxide formation on platinum , 1974 .

[220]  I. R. King Ion Recombination Rates in Methane‐Air Flames , 1957 .

[221]  Z. Ogumi,et al.  Electrochemical Oxidation and Reduction of the RuO2/Ti Electrode Surface , 1978 .

[222]  N. Takezawa,et al.  On the CH stretching bands of surface alcoholates formed on metal oxides?A reply to Morrow, Thomson and Wetmore , 1973 .

[223]  B. Conway,et al.  Kinetic Theory of Adsorption of Intermediates in Electrochemical Catalysis , 1963 .

[224]  B. Steele,et al.  Proton diffusion in crystalline ruthenium dioxide , 1980 .

[225]  B. Koiller,et al.  Low temperature conductivity of transition-metal oxides , 1975 .

[226]  H. Wendt,et al.  Electrocatalytic and thermal activation of anodic oxygen- and cathodic hydrogen-evolution in alkaline water electrolysis , 1983 .

[227]  A. Anderson Derivation of and comments on Bonaccorsi‐Scrocco‐Tomasi potentials for electrophilic additions , 1974 .

[228]  E. O'Sullivan,et al.  Oxygen gas evolution on hydrous oxides — An example of three-dimensional electrocatalysis? , 1981 .

[229]  M. Morita,et al.  The anodic characteristics of modified Mn oxide electrode: Ti/RuOx/MnOx , 1978 .

[230]  E. Sato,et al.  Oxygen evolution on SrFeO3 electrode , 1979 .

[231]  B. Conway,et al.  THE ELECTROCHEMICAL BEHAVIOR OF THE NICKEL OXIDE ELECTRODE: PART II. QUASI-EQUILIBRIUM BEHAVIOR , 1960 .

[232]  E. D. German,et al.  Theory of homogeneous reactions involving proton transfer , 1970 .

[233]  D. Adler Fundamental problems in the electronic structure of transition-metal oxides , 1975 .

[234]  B. Conway,et al.  Discovery of cathodic nitrogen evolution , 1988 .

[235]  B. Conway,et al.  Potentiodynamic examination of electrode kinetics for electroactive adsorbed species: applications to the reduction of noble metal surface oxides , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[236]  A. Bewick In-situ infrared spectroscopy of the electrode/electrolyte solution interphase , 1983 .

[237]  R. Kötz,et al.  Anodic Iridium Oxide Films XPS‐Studies of Oxidation State Changes and , 1984 .

[238]  O. Wolter,et al.  Does the oxide layer take part in the oxygen evolution reaction on platinum , 1985 .

[239]  Dr.-Ing. O. De Nora Anwendung maßbeständiger aktivierter Titan‐Anoden bei der Chloralkali‐Elektrolyse , 1970 .

[240]  H. Ewe,et al.  Elektrochemische Speicherung und Oxidation von Wasserstoff mit der intermetallischen Verbindung LaNi5 , 1973 .

[241]  B. Conway,et al.  Origin of Activation Effects of Acetonitrile and Mercury in Electrocatalytic Oxidation of Formic Acid , 1973 .

[242]  Brian E. Conway,et al.  Electrochemical reaction orders: Applications to the hydrogen- and oxygen-evolution reactions , 1964 .

[243]  D. Michell,et al.  A study of ruthenium electrodes by cyclic voltammetry and X-ray emission spectroscopy , 1978 .

[244]  David Adler,et al.  Mechanisms for Metal-Nonmental Transitions in Transition-Metal Oxides and Sulfides , 1968 .

[245]  R. Kötz,et al.  Theory for C—N− and Ag—C vibrational frequency dependence on potential: cyanide on a silver electrode , 1981 .

[246]  B. Tilak Kinetics of Chlorine Evolution—A Comparative Study , 1979 .

[247]  Oxygen evolution on semiconducting oxides , 1977 .

[248]  H. Angerstein-Kozlowska,et al.  The real condition of electrochemically oxidized platinum surfaces , 1973 .

[249]  Gabor A. Somorjai,et al.  Principles of Surface Chemistry , 1973 .

[250]  Rudolph A. Marcus,et al.  Chemical and Electrochemical Electron-Transfer Theory , 1964 .

[251]  S. Liang A 13C solid-state NMR study of the chemisorption and decomposition of ethanol on MgO , 1986 .

[252]  R. P. Messmer,et al.  Molecular-orbital studies of transition- and noble-metal clusters by the self-consistent-field-Xαscattered-wave method , 1976 .

[253]  Y. Choquette,et al.  Hydrogen discharge on a Raney nickel composite-coated electrode , 1989 .

[254]  S. Trasatti Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes , 1987 .

[255]  F. Goodridge Electrochemical hydrogen technologies , 1991 .

[256]  E. Sato,et al.  Oxygen Evolution on La1 − x Sr x Fe1 − y Co y O 3 Series Oxides , 1980 .

[257]  D. N. Buckley,et al.  The oxygen electrode. Part 7.—Influence of some electrical and electrolyte variables on the charge capacity of iridium in the anodic region , 1976 .

[258]  M. W. Roberts,et al.  Chemistry of the metal-gas interface , 1978 .

[259]  B. Conway,et al.  Fundamental and Applied Aspects of Anodic Chlorine Production , 1982 .

[260]  D. B. Hibbert The electrochemical evolution of O2 on NiCo2O4 in 18O-enriched KOH , 1980 .

[261]  H. Schäfer,et al.  Zur Chemie der Platinmetalle. RuO2 Chemischer Transport, Eigenschaften, thermischer Zerfall , 1963 .

[262]  A. Tseung,et al.  A Mechanistic Study of Oxygen Evolution on NiCo2 O 4 II . Electrochemical Kinetics , 1982 .

[263]  S. Trasatti Electrocatalysis by oxides — Attempt at a unifying approach , 1980 .

[264]  L. Brossard,et al.  Cathodic behavior of amorphous Ni0.33Zr0.67 alloy in 30 w/o KOH at 70°C , 1987 .

[265]  S. Bruckenstein,et al.  Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products [14] , 1971 .

[266]  M. Devanathan Reversible Oxygen Electrodes , 1964 .

[267]  D. Gilroy Oxide formation in the oxygen evolution region at Pt electrodes in M H2SO4 , 1977 .

[268]  J. Butler,et al.  The mechanism of electrolytic processes. Part V. The adsorption and desorption of hydrogen at platinum electrodes , 1938 .

[269]  R. T. Short,et al.  The influence of activation conditions on the performance of platinum/ruthenium methanol electro-oxidation catalysts surface enrichment phenomena , 1977 .

[270]  J. Schultze,et al.  The kinetics of the electrochemical formation and reduction of monomolecular oxide layers on platinum in 0.5 M H2SO4 , 1972 .

[271]  S. Brunauer,et al.  The Adsorption of Nitrogen by Iron Synthetic Ammonia Catalysts , 1933 .

[272]  B. Conway,et al.  Reversibility and Growth Behavior of Surface Oxide Films at Ruthenium Electrodes , 1978 .

[273]  J. Bockris,et al.  The mechanism of the electrolytic evolution of oxygen on platinum , 1956, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[274]  R. Armstrong,et al.  Impedance plane display of a reaction with an adsorbed intermediate , 1972 .

[275]  B. Conway,et al.  Examination of electrocatalysis in the anodic O2 evolution reaction at Pt through evaluation of the adsorption behaviour of kinetically involved intermediate states , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[276]  G. Sakellaropoulos Surface Reactions and Selectivity in Electrocatalysis , 1982 .

[277]  J. Sinfelt Highly Dispersed Catalytic Materials , 1972 .

[278]  A. Tseung,et al.  Preparation and characterisation of high surface area semiconducting oxides , 1970 .

[279]  O. J. Murphy,et al.  Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes , 1979 .

[280]  P. Ross Selective poisoning of H2$z.sbnd;D2 equilibration on transition metals by carbon monoxide , 1974 .

[281]  N. Krstajić,et al.  The electrodeposition of cobalt — molybdenum alloys , 1982 .

[282]  M. Jakšić Brewer intermetallic phases as synergetic electrocatalysts for hydrogen evolution , 1989 .

[283]  A. Damjanović,et al.  A Study of the Transition from Oxide Growth to O 2 Evolution at Pt Electrodes in Acid Solutions , 1983 .

[284]  D. D. Eley A calculation of heats of chemisorption , 1950 .

[285]  B. Conway,et al.  Comparative behaviour of the kinetically significant surface intermediate states in anodic o2 evolution at oxide electrocatalyst materials: Participation of mediator redox couples in the oxide , 1989 .

[286]  F. Bozsó Interaction of nitrogen with iron surfaces *1II. Fe(110) , 1977 .

[287]  J. A. Harrison,et al.  Chlorine evolution and reduction on RuO2/TiO2 electrodes , 1979 .

[288]  Y. Choquette,et al.  Electrocatalytic performance of composite-coated electrodes for alkaline water electrolysis , 1990 .

[289]  S. Trasatti,et al.  Ruthenium dioxide-based film electrodes , 1978 .

[290]  T. Yokoyama,et al.  Mechanism of the chlorine electrode reaction on platinum, iridium and rhodium in aqueous hydrochloric acid , 1970 .

[291]  G. Bond Catalysis By Metals , 1962 .

[292]  O. Wolter,et al.  Does the Oxide Layer Take Part in the Oxygen Evolution Reaction on Platinum? A DEMS Study. , 1985 .

[293]  S. B. Brummer,et al.  Adsorption and Oxidation of Formic Acid on Smooth Platinum Electrodes in Perchloric Acid Solutions , 1964 .

[294]  A. Anderson Derivation of the extended Hückel method with corrections: One electron molecular orbital theory for energy level and structure determinations , 1975 .

[295]  J. Bockris Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen , 1956 .

[296]  B. Conway,et al.  The role of ion adsorption in surface oxide formation and reduction at noble metals: General features of the surface process , 1979 .

[297]  P. Lu,et al.  Electrochemical‐Ellipsometric Studies of Oxide Film Formed on Nickel during Oxygen Evolution , 1978 .

[298]  J. Lipkowski,et al.  Electrosorption of hydrogen on single crystal surfaces of platinum , 1987 .

[299]  L. Janssen,et al.  Effect of molecular chlorine diffusion on theoretical potential-current density relations for chlorine evolving electrode , 1983 .

[300]  H. Wroblowa,et al.  Electroreduction of oxygen , 1976 .

[301]  P. Stoltze Surface science as the basis for the understanding of the catalytic synthesis of ammonia , 1987 .

[302]  B. Conway,et al.  Data collection and processing of open-circuit potential-decay measurements using a digital oscilloscope: Derivation of the H-capacitance behaviour of H2-evolving, Ni-based cathodes , 1984 .

[303]  M. Tsukada,et al.  Theory of electronic structure of oxide surfaces , 1983 .

[304]  P. Beck Metallurgy. (Physical Sciences and Engineering: Electronic Structure and Alloy Chemistry of the Transition Elements) , 1965 .

[305]  L. Janssen,et al.  Mechanism of the chlorine evolution on a ruthenium oxide/titanium oxide electrode and on a ruthenium electrode , 1977 .

[306]  O. J. Murphy,et al.  The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes , 1977 .

[307]  H. Thirsk,et al.  The kinetics of adsorption of sulphide ions at a mercury electrode , 1970 .

[308]  B. Tilak,et al.  Polarization Characteristics of Porous Electrode Systems with Adsorbed Intermediates Participating in the Electrode Reaction , 1989 .

[309]  H.-R Hilzinger,et al.  Amorphe ferromagnetische werkstoffe - magnetische grundlagen, eigenschaften und anwendungen , 1978 .

[310]  B. J. Bowles The specific adsorption of cations on electrodes—I. The adsorption of thallium on platinum at controlled potentials , 1965 .

[311]  J. Bockris,et al.  The degree of coverage of silver cathodes with adsorbed atomic hydrogen during hydrogen evolution in alkaline solutions , 1959 .

[312]  A. Wiȩckowski,et al.  Probing Adsorbates on Pt Electrode Surfaces by the Use of 13C Spin‐Echo NMR Studies of Generated from Methanol Electrosorption , 1990 .

[313]  B. Conway,et al.  Direct differential galvanostatic method for investigation of electrode adsorption capacitance , 1964 .

[314]  W. Visscher,et al.  Limiting oxygen coverage on platinum anodes in sulphuric acid solutions , 1973 .

[315]  L. I. Krishtalik Kinetics and mechanism of anodic chlorine and oxygen evolution reactions on transition metal oxide electrodes , 1981 .

[316]  B. Conway,et al.  Determination of the adsorption behaviour of ‘overpotential-deposited’ hydrogen-atom species in the cathodic hydrogen-evolution reaction by analysis of potential-relaxation transients , 1985 .

[317]  W. Bonner,et al.  Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst , 1982 .

[318]  L. Burke,et al.  Oxygen gas evolution at, and deterioration of, RuO2/ZrO2-coated titanium anodes at elevated temperature in strong base , 1984 .

[319]  Ronald Woods,et al.  Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption , 1971 .

[320]  H. Stout The kinetics of the electrodeposition of the azide ion , 1945 .

[321]  S. Yalçin,et al.  A review of nuclear hydrogen production , 1989 .

[322]  P. Rüetschi,et al.  ELECTROCHEMICAL PROPERTIES OF PbO$sub 2$ AND THE ANODIC CORROSION OF LEAD AND LEAD ALLOYS , 1958 .

[323]  G. Lodi,et al.  Mechanistic study of C12 evolution at Ti-supported Co3O4 anodes , 1985 .

[324]  E. Sato,et al.  Oxygen evolution on La1-xSrxMnO3 electrodes in alkaline solutions , 1979 .

[325]  KitamuraTohru,et al.  HYDROGEN EVOLUTION AT LaNi5 AND MmNi5 ELECTRODES IN ALKALINE SOLUTIONS , 1981 .

[326]  A. Tseung,et al.  A Potentiostatic Pulse Study of Oxygen Evolution on Teflon‐Bonded Nickel‐Cobalt Oxide Electrodes , 1979 .

[327]  J. Wit,et al.  Oxygen evolution on La0.5Ba0.5CoO3: Transient measurements , 1985 .

[328]  R. Baetzold Molecular orbital description of catalysis by metal clusters , 1973 .

[329]  W. Schmickler,et al.  Resonance Tunneling During the Anodic Oxygen Evolution at Oxide Covered Platinum Electrodes , 1978 .

[330]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[331]  B. Stevens,et al.  Progress in reaction kinetics , 1961 .

[332]  E. Yeager,et al.  Transactions of the Symposium on Electrode Processes , 1962 .

[333]  D. Turnbull,et al.  Structure and Properties of Metallic Glasses , 1978, Science.

[334]  S. Trasatti Electrodes of Conductive Metallic Oxides , 1981 .

[335]  D. Rand,et al.  Cyclic voltammetric studies on iridium electrodes in sulphuric acid solutions , 1974 .

[336]  S. Pons The use of fourier transform infrared spectroscopy for in situ recording of species in the electrode-electrolyte solution interphase , 1983 .

[337]  S. Feldberg,et al.  A serendipitous soret effect associated with a laser-induced interfacial temperature jump in an electrochemical system , 1988 .