Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system

Abstract In this paper, a fractional order (FO) PI λ D μ controller is designed to take care of various contradictory objective functions for an automatic voltage regulator (AVR) system. An improved evolutionary non-dominated sorting genetic algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI λ D μ and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI λ D μ controller.

[1]  J. W. Finch,et al.  Turbogenerator self-tuning automatic voltage regulator , 1999 .

[2]  Hu Jun,et al.  A New Optimization Approach-Chaos Genetic Algorithm , 2001 .

[3]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[4]  E. S. Ali,et al.  Coordinated design of PSSs and TCSC via bacterial swarm optimization algorithm in a multimachine power system , 2012 .

[5]  Salvatore Graziani,et al.  Stochastic Resonance: Theory and Applications , 2000 .

[6]  Sakti Prasad Ghoshal,et al.  Comparative seeker and bio-inspired fuzzy logic controllers for power system stabilizers , 2011 .

[7]  Duarte Valério,et al.  Introduction to single-input, single-output fractional control , 2011 .

[8]  Danqing Guo,et al.  Chaotic-NSGA-II: An effective algorithm to solve multi-objective optimization problems , 2010, 2010 International Conference on Intelligent Computing and Integrated Systems.

[9]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[10]  E. A. Jackson,et al.  Periodic entrainment of chaotic logistic map dynamics , 1990 .

[11]  Hassan Bevrani,et al.  Fuzzy Logic-Based Load-Frequency Control Concerning High Penetration of Wind Turbines , 2012, IEEE Systems Journal.

[12]  Suman Saha,et al.  On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes , 2011, ISA transactions.

[13]  Yu Guo,et al.  CAS algorithm-based optimum design of PID controller in AVR system , 2009 .

[14]  B. W. Hogg,et al.  Self-tuning automatic voltage regulators for a synchronous generator , 1989 .

[15]  Mikkel T. Jensen,et al.  Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms , 2003, IEEE Trans. Evol. Comput..

[16]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[17]  Saptarshi Das,et al.  Handling Packet Dropouts and Random Delays for Unstable Delayed Processes in NCS by Optimal Tuning of PIλDμ Controllers with Evolutionary Algorithms , 2011, ISA transactions.

[18]  Mehmet Önder Efe,et al.  Fractional Order Systems in Industrial Automation—A Survey , 2011, IEEE Transactions on Industrial Informatics.

[19]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[20]  Lixiang Li,et al.  Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm , 2012, Expert Syst. Appl..

[21]  Li Meng,et al.  Design of an optimal fractional-order PID controller using multi-objective GA optimization , 2009, 2009 Chinese Control and Decision Conference.

[22]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[23]  Muwaffaq I. Alomoush,et al.  Load frequency control and automatic generation control using fractional-order controllers , 2010 .

[24]  M. A. El-Sharkawy,et al.  Design and allocation of power system stabilizers using the particle swarm optimization technique for an interconnected power system , 2012 .

[25]  A. J. Calderón,et al.  Fractional PID Controllers for Industry Application. A Brief Introduction , 2007 .

[26]  D. P. Atherton,et al.  Automatic tuning of optimum PID controllers , 1993 .

[27]  R. N. Patel,et al.  Application of AI supported optimal controller for automatic generation control of a restructured power system with parallel AC–DC tie lines , 2012 .

[28]  Dong Hwa Kim Hybrid GA-BF based intelligent PID controller tuning for AVR system , 2011, Appl. Soft Comput..

[29]  D. Devaraj,et al.  Co-ordinated Design of AVR-PSS Using Multi Objective Genetic Algorithm , 2010, SEMCCO.

[30]  A. Chatterjee,et al.  Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system , 2009 .

[31]  Adrian Gambier,et al.  Digital PID controller design based on parametric optimization , 2008, 2008 IEEE International Conference on Control Applications.

[32]  Luigi Fortuna,et al.  Does chaos work better than noise , 2002 .

[33]  G. Griva,et al.  Design of fractional order PID controller for boost converter based on Multi-Objective optimization , 2010, Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010.

[34]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[35]  Hossam E.A. Talaat,et al.  Design and experimental investigation of a decentralized GA-optimized neuro-fuzzy power system stabilizer , 2010 .

[36]  A. Gambier,et al.  MPC and PID control based on Multi-Objective Optimization , 2008, 2008 American Control Conference.

[37]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[38]  Hisao Ishibuchi,et al.  Effects of Removing Overlapping Solutions on the Performance of the NSGA-II Algorithm , 2005, EMO.

[39]  S. M. Abd-Elazim,et al.  Coordinated design of PSSs and SVC via bacteria foraging optimization algorithm in a multimachine power system , 2012 .

[40]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[41]  E. Swidenbank,et al.  Expert control of a self-tuning automatic voltage regulator , 1995 .