Ladder-type materials

Materials with a ribbon- or ladder-type framework possess a two-dimensional geometry and are thus intermediate between linear and three-dimensional systems. The limited conformational freedom of ladder polymers is particularly relevant in the case of conjugated ladder-type materials since the steric inhibition of electron delocalization is drastically reduced.Up until today two general routes have been used to prepare ladder-type materials: (1) the polymerisation of multifunctional monomers, in which both strands of the ladder structure are generated in a single reaction; and (2) the cyclisation of suitably functionalized open-chain (single-stranded) precursor polymers in a polymer-analogous process. Both strategies pre-suppose certain essentials to arrive at structurally defined ladder polymers, especially the exclusion of side-reactions and an almost quantitative conversion of the starting materials.The main attention of this article is focused on an active physical function of ladder-type materials. Among others, ladder-type poly( p-phenylene)s (LPPPs) represent an outstanding class of ladder-type materials. They are characterized by an extraordinarily low concentration of active traps (topological defects, impurities) and display a set of attractive electronic properties (very intensive photo- and electroluminescence, high charge carrier mobilities). This unique performance has established the solution processable LPPPs as standard materials for organic polymer based light emitting diodes (LEDs) and optically pumped solid state lasers.

[1]  Ullrich Scherf,et al.  TRANSIENT AND DC ELECTROLUMINESCENCE OF SOME NEW CONJUGATED POLYMERS , 1995 .

[2]  W. Saenger,et al.  Synthese eines vollständig ungesättigten „molekularen Brettes”︁ , 1994 .

[3]  R. Friend,et al.  Electroluminescence and photoluminescence investigations of the yellow emission of devices based on ladder-type oligo(para-phenylene)s , 1994 .

[4]  Ullrich Scherf,et al.  Efficient white light-emitting diodes realized with new processable blends of conjugated polymers , 1997 .

[5]  M. Ballauff,et al.  CHARACTERIZATION AND ANALYSIS OF THE PHASE-BEHAVIOR OF POLY(1,4-PHENYLENE 2,5-DI-N-ALKOXYTEREPHTHALATE)S , 1993 .

[6]  Ullrich Scherf,et al.  Polyarylenes and poly(arylenevinylene)s, 9 The oxidized states of a (1,4‐phenylene) ladder polymer , 1992 .

[7]  G. Leising,et al.  Investigations of the electronic transport in a new conjugated polymer , 1997 .

[8]  Larry R. Dalton,et al.  Synthesis and characterization of new polymers exhibiting large optical nonlinearities. I. Ladder polymers from 3,6-disubstituted 2,5-dichloroquinone and tetraaminobenzene , 1990 .

[9]  W. Spirkl,et al.  Mechanism of gain narrowing in conjugated polymer thin films , 1998 .

[10]  A. Sylwester,et al.  Conductive, spin-cast carbon films from polyacrylonitrile , 1987 .

[11]  A. Schlüter,et al.  Cyclobuten‐Ringöffnung: Eine nützliche Reaktion zur Synthese doppelsträngiger Moleküle , 1991 .

[12]  H. Bässler,et al.  PHOTOCONDUCTION IN THIN FILMS OF A LADDER-TYPE POLY-PARA-PHENYLENE , 1998 .

[13]  Graupner,et al.  Femtosecond relaxation of photoexcitations in a poly(para-phenylene)-type ladder polymer. , 1996, Physical review letters.

[14]  Kurz,et al.  Dynamics of optical excitations in a ladder-type pi -conjugated polymer containing aggregate states. , 1996, Physical review. B, Condensed matter.

[15]  D. Hertel,et al.  Charge Carrier Mobility in a Ladder-Type Conjugated Polymer , 1998 .

[16]  D. Leopold,et al.  Electronic states induced by ion irradiation in a conjugated ladder polymer , 1996 .

[17]  Richard D. McCullough,et al.  THE CHEMISTRY OF CONDUCTING POLYTHIOPHENES , 1998 .

[18]  R. Friend,et al.  Photocurrent measurements on aggregates in ladder-type poly(p-phenylene) , 1995 .

[19]  C. Gans,et al.  Viscometric Determination of the Statistical Segment Length of Wormlike Polymers , 1998 .

[20]  Salvatore Stagira,et al.  Cooperative effects in blue light emission of poly-(para-phenylene)-type ladderpolymer , 1997 .

[21]  K. Müllen,et al.  Characterization of a ladder polymer by small-angle X-ray and neutron scattering , 1997 .

[22]  G. Wegmann,et al.  SPONTANEOUS AND STIMULATED EMISSION FROM A LADDER-TYPE CONJUGATED POLYMER , 1999 .

[23]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[24]  G. Wegner,et al.  PALLADIUM AND NICKEL CATALYZED POLYCONDENSATION - THE KEY TO STRUCTURALLY DEFINED POLYARYLENES AND OTHER AROMATIC POLYMERS , 1993 .

[25]  L. Schmitz,et al.  Characterization of a stiff-chain polyimide in solution , 1995 .

[26]  M. Kertész,et al.  Geometrical and electronic structures of a benzimidazobenzophenanthroline-type ladder polymer (BBL) , 1992 .

[27]  E. List,et al.  Efficient red- and orange-light-emitting diodes realized by excitation energy transfer from blue-light-emitting conjugated polymers , 1997 .

[28]  C. Marvel,et al.  The Structure of Vinyl Polymers: the Polymer from Methyl Vinyl Ketone , 1938 .

[29]  M. F. Kocher,et al.  Photoconductivity of an Inorganic/Organic Composite Containing Dye-Sensitized Nanocrystalline Titanium Dioxide , 1998 .

[30]  Ullrich Scherf,et al.  Highly efficient electroluminescence of new wide band gap ladder‐type poly(para‐phenylenes) , 1996 .

[31]  F. Arnold,et al.  Unusual film‐forming properties of aromatic heterocyclic ladder polymers , 1971 .

[32]  Harald Giessen,et al.  THE OPTICAL GAIN MECHANISM IN SOLID CONJUGATED POLYMERS , 1998 .

[33]  J. Tour,et al.  Imine-Bridged Planar Poly(p-phenylene) Derivatives for Maximization of Extended .pi.-Conjugation. The Common Intermediate Approach , 1994 .

[34]  J. F. Stoddart,et al.  Sterisch einheitliche Oligomerisierung durch repetitive Diels‐Alder‐Reaktionen , 1989 .

[35]  David J. Williams,et al.  Gürtel‐ und Kragenmoleküle: Ein Hexaepoxyoctacosahydro[12]cyclacen , 1987 .

[36]  W. Graupner,et al.  Photoluminescence and UV-VIS absorption study of poly (para-phenylene)-type ladder-polymers , 1995 .

[37]  Volker Wittwer,et al.  A flexible conjugated polymer laser , 1998 .

[38]  Arno Kraft,et al.  Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. , 1998, Angewandte Chemie.

[39]  S. K. Chadda,et al.  The degradation and stabilization of polyacrylonitrile—II. Degradation of 1,3,5,7-tetracyanoheptane , 1983 .

[40]  S. Jenekhe,et al.  Solubilization, solutions, and processing of aromatic heterocyclic rigid rod polymers in aprotic organic solvents: poly(p-phenylene-2,6-benzobisthiazolediyl) (PBT) , 1989 .

[41]  S. Jenekhe,et al.  Complexation-mediated solubilization and processing of rigid-chain and ladder polymers in aprotic organic solvents , 1990 .

[42]  Uli Lemmer,et al.  AGGREGATE FLUORESCENCE IN CONJUGATED POLYMERS , 1995 .

[43]  K. Müllen,et al.  5,6,7,8-Tetramethylenebicyclo[2.2.2]oct-2-ene as “Bis(diene)” in Repetitive Diels-Alder Reactions , 1991 .

[44]  Klaus Müllen,et al.  Leiterpolymere mit Heteroacen‐Gerüst , 1994 .

[45]  Guglielmo Lanzani,et al.  FEMTOSECOND RELAXATION OF PHOTOEXCITATIONS IN A SOLUTION OF A POLY(PARA-PHENYLENE)-TYPE LADDER POLYMER , 1995 .

[46]  David J. Williams,et al.  Auf dem Weg zu [12]Collaren , 1988 .

[47]  W. Spirkl,et al.  Nonlinear Emission and Recombination in Conjugated Polymer Waveguides , 1999 .

[48]  Ullrich Scherf,et al.  Blue green stimulated emission from a high gain conjugated polymer , 1997 .

[49]  T. Swager,et al.  Fused Polycyclic Aromatics via Electrophile-Induced Cyclization Reactions: Application to the Synthesis of Graphite Ribbons , 1994 .

[50]  Rainer F. Mahrt,et al.  Femtosecond dynamics of stimulated emission and photoinduced absorption in a PPP-type ladder polymer , 1995 .

[51]  J. Tour,et al.  Synthesis of planar poly(p-phenylene) derivatives for maximization of extended π-conjugation , 1993 .