Precision orbit determination for TOPEX/POSEIDON

The TOPEX/POSEIDON mission objective requires that the radial position of the spacecraft be determined with an accuracy better than 13 cm RMS (root mean square). This stringent requirement is an order of magnitude below the accuracy achieved for any altimeter mission prior to the definition of the TOPEX/POSEIDON mission. To satisfy this objective, the TOPEX Precision Orbit Determination (POD) Team was established as a joint effort between the NASA Goddard Space Flight Center and the University of Texas at Austin, with collaboration from the University of Colorado and the Jet Propulsion Laboratory. During the prelaunch development and the postlaunch verification phases, the POD team improved, calibrated, and validated the precision orbit determination computer software systems. The accomplishments include (1) increased accuracy of the gravity and surface force models and (2) improved performance of both the laser ranging and Doppler tracking systems. The result of these efforts led to orbit accuracies for TOPEX/POSEIDON which are significantly better than the original mission requirement. Tests based on data fits, covariance analysis, and orbit comparisons indicate that the radial component of the TOPEX/POSEIDON spacecraft is determined, relative to the Earth's mass center, with an RMS error in the range of 3 to 4 cm RMS. This orbit accuracy, together with the near continuous dual-frequency altimetry from this mission, provides the means to determine the ocean's dynamic topography with an unprecedented accuracy.

[1]  W. G. Melbourne,et al.  GPS precise tracking of TOPEX/POSEIDON: Results and implications , 1994 .

[2]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[3]  C. Valorge,et al.  Precise Centre National d'Etudes Spatiales orbits for TOPEX/POSEIDON: Is reaching 2 cm still a challenge? , 1994 .

[4]  Bob E. Schutz,et al.  Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2 , 1994 .

[5]  S. Bettadpur,et al.  Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry , 1994 .

[6]  Stephen K. Gill,et al.  Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes , 1994 .

[7]  Hyung-Jin Rim,et al.  Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON , 1994 .

[8]  Thomas P. Yunck,et al.  The GPS flight experiment on TOPEX/POSEIDON , 1994 .

[9]  E. J. Christensen,et al.  Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system , 1994 .

[10]  Pascal Willis,et al.  First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon , 1994 .

[11]  J. Andrew Marshall,et al.  Radiative force model performance for TOPEX/Poseidon precision orbit determination , 1994 .

[12]  R. Nerem,et al.  Gravity model improvement using the DORIS tracking system on the SPOT 2 satellite , 1994 .

[13]  N. K. Pavlis,et al.  A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3 , 1994 .

[14]  Michael Watkins,et al.  Comparison of terrestrial reference frame velocities determined from SLR and VLBI , 1994 .

[15]  M. Watkins,et al.  Long term changes in the Earth's shape, rotation, and geocenter , 1993 .

[16]  Olivier Francis,et al.  Estimate of the radial orbit error by complex demodulation , 1993 .

[17]  Raymond B. Frauenholz,et al.  The Role of Anomalous Satellite-Fixed Accelerations in TOPEX/Poseidon Orbit Maintenance , 1993 .

[18]  Paul H. Malitson,et al.  Optical attenuation mechanism upgrades, MOBLAS, and TLRS systems , 1993 .

[19]  N. K. Pavlis,et al.  Temporal variations of the Earth's gravitational field from satellite laser ranging to LAGEOS , 1993 .

[20]  R. S. Nerem,et al.  Expected orbit determination performance for the TOPEX/Poseidon mission , 1993, IEEE Trans. Geosci. Remote. Sens..

[21]  D. Bolvin,et al.  Orbit determination support of the Ocean Topography Experiment (TOPEX)/Poseidon operational orbit , 1993 .

[22]  S. Luthcke,et al.  Nonconservative force model parameter estimation strategy for TOPEX/Poseidon precision orbit determination , 1992 .

[23]  John C. Ries,et al.  Absolute positioning using Doris tracking of the SPOT‐2 satellite , 1992 .

[24]  C. Boucher,et al.  ITRF 92 and its associated velocity field. , 1992 .

[25]  Michael B. Heflin,et al.  Precise determination of earth's center of mass using measurements from the Global Positioning System , 1992 .

[26]  Dennis D. McCarthy,et al.  IERS Standards (1992). , 1992 .

[27]  S. Luthcke,et al.  Erratum-Modeling Radiation Forces Acting on Topex/Poseidon for Precision Orbit Determination , 1992 .

[28]  C. Boucher,et al.  Positioning results with doris on SPOT2 after first year of mission , 1992 .

[29]  John C. Ries,et al.  Progress in the determination of the gravitational coefficient of the Earth , 1992 .

[30]  George W. Rosborough,et al.  Prediction of radiant energy forces on the TOPEX/POSEIDON spacecraft , 1992 .

[31]  John C. Ries,et al.  Orbit determination in the relativistic geocentric reference frame , 1991 .

[32]  Bob E. Schutz,et al.  Comparison of VLBI and SLR geocentric site coordinates , 1991 .

[33]  D. Yuan The determination and error assessment of the Earth's gravity field model , 1991 .

[34]  David E. Smith,et al.  Tectonic motion and deformation from satellite laser ranging to LAGEOS , 1990 .

[35]  P. Deschamps,et al.  DORIS (Doppler orbitography and radiopositioning integrated from space): System assessment results with DORIS on SPOT 2 , 1990 .

[36]  Thomas P. Yunck,et al.  Precise tracking of remote sensing satellites with the Global Positioning System , 1990 .

[37]  Precision orbit determination for Topex , 1990 .

[38]  An Improved Model for the Earth’s Gravity Field , 1990 .

[39]  W. Eddy,et al.  The GEM-T2 Gravitational Model , 1989 .

[40]  Francis J. Lerch,et al.  Optimum data weighting and error calibration for estimation of gravitational parameters , 1989 .

[41]  E. C. Pavlis,et al.  An improved error assessment for the GEM-T1 gravitational model , 1989 .

[42]  Thomas P. Yunck,et al.  Reduced-dynamic technique for precise orbit determination of low earth satellites , 1991 .

[43]  E. C. Pavlis,et al.  A new gravitational model for the earth from satellite tracking data - GEM-T1 , 1988 .

[44]  C. Shum,et al.  Altimeter crossover methods for precision orbit determination , 1988 .

[45]  B. T. Truong,et al.  DORIS - A precise satellite-positioning Doppler system , 1988 .

[46]  B. Tapley,et al.  Earth radiation pressure effects on satellites , 1988 .

[47]  David L. Farless,et al.  On the choice of orbits for an altimetric satellite to study ocean circulation and tides , 1987 .

[48]  B. Tapley,et al.  Radial, transverse and normal satellite position perturbations due to the geopotential , 1987 .

[49]  David E. Smith,et al.  A global geodetic reference frame from LAGEOS ranging (SL5.1AP) , 1985 .

[50]  John Degnan,et al.  Satellite Laser Ranging: Current Status and Future Prospects , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[51]  H. D. Black,et al.  Correcting satellite Doppler data for tropospheric effects , 1984 .

[52]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[53]  Francis J. Lerch,et al.  Goddard earth models for oceanographic applications (GEM 10B and IOC) , 1981 .

[54]  J. Marsh,et al.  Precision orbit analyses in support of the Seasat altimeter experiment , 1980 .

[55]  Carl Wunsch,et al.  On Using Satellite Altimetry to Determine the General Circulation of the Oceans With Application to Geoid Improvement (Paper 80R0631) , 1980 .

[56]  H. D. Black,et al.  The transit system, 1977: performance, plans and potential , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[57]  B. Tapley,et al.  Orbit accuracy assessment for Seasat , 1980 .

[58]  G. Thuillier,et al.  A NEW THREE-DIMENSIONAL THERMOSPHERIC MODEL BASED ON SATELLITE DRAG DATA , 2017 .

[59]  H. S. Hopfield Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data , 1971 .

[60]  W. M. Kaula Theory of satellite geodesy , 1966 .