Quantum Fisher information for moving three-level atom

Quantum information technology largely relies on a precious and fragile resource, call quantum entanglement, which exhibits a highly nontrivial manifestation of the coherent superposition of states of composite quantum systems. In this article, we discuss the correlation between the quantum entanglement measured by the von Neumann entropy and atomic quantum Fisher information by taking account the case of moving three-level atom. Our results show that there is a monotonic relation between the atomic quantum Fisher information and entanglement in the case of non-moving atom. On the other hand, we find that the atomic quantum Fisher information and entanglement exhibit an opposite changement behavior during the time evolution in the presence of atomic motion.

[1]  S. Abdel-Khalek DYNAMICS OF FISHER INFORMATION IN KERR MEDIUM , 2009 .

[2]  Masahito Hayashi,et al.  Quantum Information: An Introduction , 2010 .

[3]  S. Abdel-Khalek,et al.  Entanglement of a two-level atom papered in a finite trio-coherent state , 2008 .

[4]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[5]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[6]  B. Frieden Physics from Fisher information , 1998 .

[7]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[8]  林 正人 Quantum information : an introduction , 2006 .

[9]  S. Abdel-Khalek,et al.  New features of Wehrl entropy and Wehrl PD of a single Cooper-pair box placed inside a dissipative cavity , 2010 .

[10]  Escort Husimi distributions, Fisher information and nonextensivity , 2004, cond-mat/0402467.

[11]  David A. Lavis,et al.  Physics from Fisher information , 2002 .

[12]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[13]  J. Morton,et al.  Quantum metrology with molecular ensembles , 2010 .

[14]  Xiang Liu Entropy behaviors and statistical properties of the field interacting with a Ξ-type three-level atom , 2000 .

[15]  T. Noh Counterfactual quantum cryptography. , 2008, Physical review letters.

[16]  Geometric phase of a moving three-level atom , 2009, 0912.4851.

[17]  K. Berrada,et al.  Quantum Fisher information for a qubit system placed inside a dissipative cavity , 2012 .

[18]  A. Plastino,et al.  Information quantifiers’ description of weak field vs. strong field dynamics for a trapped ion in a laser field , 2011 .

[19]  K. Berrada,et al.  Entanglement of atom–field interaction for nonlinear optical fields , 2011 .

[20]  S. Khalek,et al.  Quantum metrology with entangled spin-coherent states of two modes , 2012 .

[21]  V. Lakshminarayanan,et al.  Comparison of nonius horopter for different wavelengths between color normal and color deficients , 2008 .

[22]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[23]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  S. Abdel-Khalek,et al.  Entanglement evaluation with atomic Fisher information , 2010 .

[25]  S. Abdel-Khalek,et al.  Aspects on entropy squeezing of a two-level atom in a squeezed vacuum , 2003 .

[26]  N. Enaki,et al.  Quantum trapping conditions for three-level atom flying through bimodal cavity field , 2008 .

[27]  M. S. Abdalla,et al.  Uncertainty relation and information entropy of a time-dependent bimodal two-level system , 2002 .

[28]  Knight,et al.  Schrödinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  Lin,et al.  Nonresonant interaction of a three-level atom with cavity fields. I. General formalism and level occupation probabilities. , 1987, Physical review. A, General physics.

[30]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[31]  Knight,et al.  Establishment of an entangled atom-field state in the Jaynes-Cummings model. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[32]  K. Berrada,et al.  Quantum Fisher information for a single qubit system , 2012 .

[33]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[34]  O. Barndorff-Nielsen,et al.  On quantum statistical inference , 2003, quant-ph/0307189.

[35]  S. Abdel-Khalek,et al.  Entropy squeezing of a driven two-level atom in a cavity with injected squeezed vacuum , 2005 .

[36]  Sayed Abdel-Khalek,et al.  Correlation and entanglement of a three-level atom inside a dissipative cavity , 2011 .

[37]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[38]  Tomoyuki Morimae,et al.  Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation , 2010, 1003.0293.

[39]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[40]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[41]  C. H. Raymond Ooi,et al.  Geometric phase and entanglement for a single qubit interacting with deformed-states superposition , 2013, Quantum Inf. Process..

[42]  Zheng-Fu Han,et al.  Security of counterfactual quantum cryptography , 2010, 1007.3066.

[43]  Akio Fujiwara,et al.  Estimation of SU(2) operation and dense coding: An information geometric approach , 2001 .

[44]  K. Berrada,et al.  Maximal entanglement of bipartite spin states in the context of quantum algebra , 2011 .