COMPLEX ANALYSIS AND THE FUNK TRANSFORM
暂无分享,去创建一个
L. Mason | T. Bailey | M. Eastwood | A. Gover
[1] H. Bateman,et al. The Solution of Partial Differential Equations by Means of Definite Integrals , 1904 .
[2] P. Funk. Über Flächen mit lauter geschlossenen geodätischen Linien , 1913 .
[3] F. John. The ultrahyperbolic differential equation with four independent variables , 1938 .
[4] W. Schmid. Homogeneous complex manifolds and representations of semisimple lie groups. , 1968, Proceedings of the National Academy of Sciences of the United States of America.
[5] Roger Penrose,et al. Solutions of the Zero-Rest-Mass Equations , 1969 .
[6] R. Harvey. The Theory of Hyperfunctions on Totally Real Subsets of a Complex Manifold with Applications to Extension Problems , 1969 .
[7] V. Guillemin. The radon transform on zoll surfaces , 1976 .
[8] S. G. Gindikin,et al. Integral geometry in affine and projective spaces , 1982 .
[9] R. Penrose,et al. Spinors and Space–Time: Subject and author index , 1984 .
[10] S. Sternberg,et al. An ultra-hyperbolic analogue of the Robinson-Kerr theorem , 1986 .
[11] Some notes on the Radon transform and integral geometry , 1992 .
[12] Contour integrals for the ultrahyperbolic wave equation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[13] P. Schapira,et al. Radon–Penrose Transform for D-Modules , 1996 .
[14] T. Bailey,et al. Institute for Mathematical Physics Zero–energy Fields on Real Projective Space , 2022 .
[15] G. Sparling. Inversion for the Radon line transform in higher dimensions , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] L. Mason,et al. The Funk transform as a Penrose transform , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] A. D'agnolo,et al. Real forms of the radon-penrose transform , 2000 .