Pool-seq driven proteogenomic database for Group G Streptococcus.

[1]  E. Kristiansson,et al.  Proteotyping bacteria: Characterization, differentiation and identification of pneumococcus and other species within the Mitis Group of the genus Streptococcus by tandem mass spectrometry proteomics , 2018, PloS one.

[2]  A. Pain,et al.  Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates. , 2017, Journal of proteome research.

[3]  J. Kere,et al.  Sequence analysis of pooled bacterial samples enables identification of strain variation in group A streptococcus , 2017, Scientific Reports.

[4]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[5]  Lars Malmström,et al.  Quantitative proteogenomics of human pathogens using DIA-MS. , 2015, Journal of proteomics.

[6]  A. Nesvizhskii Proteogenomics: concepts, applications and computational strategies , 2014, Nature Methods.

[7]  J. Armengaud,et al.  Non-model organisms, a species endangered by proteogenomics. , 2014, Journal of proteomics.

[8]  S. Rantala,et al.  Streptococcus dysgalactiae subsp. equisimilis bacteremia: an emerging infection , 2014, European Journal of Clinical Microbiology & Infectious Diseases.

[9]  California Jack Cassidy,et al.  An Automated Proteogenomic Method Uses Mass Spectrometry to Reveal Novel Genes in Zea mays* , 2013, Molecular & Cellular Proteomics.

[10]  B. Maček,et al.  Deep Coverage of the Escherichia coli Proteome Enables the Assessment of False Discovery Rates in Simple Proteogenomic Experiments* , 2013, Molecular & Cellular Proteomics.

[11]  Brian L. Frey,et al.  Discovery and Mass Spectrometric Analysis of Novel Splice-junction Peptides Using RNA-Seq* , 2013, Molecular & Cellular Proteomics.

[12]  S. Hubbard,et al.  Addressing Statistical Biases in Nucleotide-Derived Protein Databases for Proteogenomic Search Strategies , 2012, Journal of proteome research.

[13]  Derrick E. Fouts,et al.  PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species , 2012, Nucleic acids research.

[14]  Gabor T. Marth,et al.  Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.

[15]  R. Vuento,et al.  Distribution of emm types in invasive and non-invasive group A and G streptococci , 2012, European Journal of Clinical Microbiology & Infectious Diseases.

[16]  Roger Karlsson,et al.  Strain-level typing and identification of bacteria using mass spectrometry-based proteomics. , 2012, Journal of proteome research.

[17]  S. W. Long,et al.  Bacterial genomics in infectious disease and the clinical pathology laboratory. , 2012, Archives of pathology & laboratory medicine.

[18]  Bing Zhang,et al.  Protein identification using customized protein sequence databases derived from RNA-Seq data. , 2012, Journal of proteome research.

[19]  H. Hakonarson,et al.  SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data , 2011, Nucleic acids research.

[20]  James C. Wright,et al.  Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and "resurrected" pseudogenes in the mouse genome. , 2011, Genome research.

[21]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[22]  W. Pao,et al.  A Bioinformatics Workflow for Variant Peptide Detection in Shotgun Proteomics* , 2011, Molecular & Cellular Proteomics.

[23]  L. Käll,et al.  Quality assessments of peptide–spectrum matches in shotgun proteomics , 2011, Proteomics.

[24]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[25]  Martin Ester,et al.  PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes , 2010, Bioinform..

[26]  Dexter T. Duncan,et al.  CanProVar: a human cancer proteome variation database , 2010, Human mutation.

[27]  J. Buhmann,et al.  Protein Identification False Discovery Rates for Very Large Proteomics Data Sets Generated by Tandem Mass Spectrometry* , 2009, Molecular & Cellular Proteomics.

[28]  R. Vuento,et al.  Predictors of mortality in beta-hemolytic streptococcal bacteremia: a population-based study. , 2009, The Journal of infection.

[29]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[30]  Yong-Hwan Lee,et al.  SysPIMP: the web-based systematical platform for identifying human disease-related mutated sequences from mass spectrometry , 2008, Nucleic Acids Res..

[31]  David R. Riley,et al.  Comparative genomics: the bacterial pan-genome. , 2008, Current opinion in microbiology.

[32]  Blagoy Blagoev,et al.  A mass spectrometry–friendly database for cSNP identification , 2007, Nature Methods.

[33]  R. Hendrickson,et al.  Detection and validation of non-synonymous coding SNPs from orthogonal analysis of shotgun proteomics data. , 2007, Journal of proteome research.

[34]  Patrick G. A. Pedrioli,et al.  A high-quality catalog of the Drosophila melanogaster proteome , 2007, Nature Biotechnology.

[35]  R. Guigó,et al.  Improving gene annotation using peptide mass spectrometry. , 2007, Genome research.

[36]  R. Aebersold,et al.  Dynamic Spectrum Quality Assessment and Iterative Computational Analysis of Shotgun Proteomic Data , 2006, Molecular & Cellular Proteomics.

[37]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[39]  Jacob D. Jaffe,et al.  Proteogenomic mapping as a complementary method to perform genome annotation , 2004, Proteomics.

[40]  D. Creasy,et al.  Error tolerant searching of uninterpreted tandem mass spectrometry data , 2002, Proteomics.

[41]  Qunhua Li,et al.  Modes of inference for evaluating the confidence of peptide identifications. , 2008, Journal of proteome research.

[42]  William Stafford Noble,et al.  Posterior error probabilities and false discovery rates: two sides of the same coin. , 2008, Journal of proteome research.