A microstructural investigation of natural lamellar ringwoodite in olivine of the shocked Sixiangkou chondrite

[1]  A. Goresy,et al.  Fracture‐related intracrystalline transformation of olivine to ringwoodite in the shocked Sixiangkou meteorite , 2006 .

[2]  T. Kondo,et al.  Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size , 2004 .

[3]  P. Gillet,et al.  Ringwoodite lamellae in olivine: Clues to olivine-ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Sharp,et al.  Kinetics of intracrystalline olivine–ringwoodite transformation , 2000 .

[5]  D. Farber,et al.  Divalent cation diffusion in Mg2SiO4 spinel (ringwoodite), β phase (wadsleyite), and olivine: Implications for the electrical conductivity of the mantle , 2000 .

[6]  S. Stein,et al.  Deep Earthquakes in Real Slabs , 1999, Science.

[7]  Ross,et al.  Enhancement of cation diffusion rates across the 410-kilometer discontinuity in Earth's mantle , 1999, Science.

[8]  D. Rubie,et al.  The effect of strain energy on growth rates during the olivine-spinel transformation and implications for olivine metastability in subducting slabs , 1998 .

[9]  F. Guyot,et al.  The Breakdown of Olivine to Perovskite and Magnesiowüstite , 1997, Science.

[10]  T. Sharp,et al.  Intracrystalline Transformation of Olivine to Wadsleyite and Ringwoodite Under Subduction Zone Conditions , 1996, Science.

[11]  T. Sharp,et al.  The Majorite-Pyrope + Magnesiowüstite Assemblage: Constraints on the History of Shock Veins in Chondrites , 1996, Science.

[12]  Charles R. Ross,et al.  Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes , 1994 .

[13]  J. Ganguly Diffusion, Atomic Ordering, and Mass Transport , 1991 .

[14]  R. Joesten Grain-Boundary Diffusion Kinetics in Silicate and Oxide Minerals , 1991 .

[15]  D. Rubie,et al.  Mechanism of the γ–β phase transformation of Mg2SiO4 at high temperature and pressure , 1990, Nature.

[16]  Alexandra Navrotsky,et al.  Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application , 1989 .

[17]  P. Burnley,et al.  Stress dependence of the mechanism of the olivine–spinel transformation , 1989, Nature.

[18]  F. Guyot,et al.  Electron microscopy of high-pressure phases synthesized from natural olivine in diamond anvil cell , 1989 .

[19]  P. McMillan,et al.  Raman spectra of beta -Mg 2 SiO 4 (modified spinel) and gamma -Mg 2 SiO 4 (spinel) , 1987 .

[20]  B. Velde,et al.  Comparison of the raman microprobe spectra of (Mg, Fe)2SiO4 and Mg2GeO4 with olivine and spinel structures , 1986 .

[21]  J. Boland,et al.  Olivine to spinel transformation in Mg2SiO4 via faulted structures , 1983, Nature.

[22]  A. Putnis,et al.  A spinel to β-phase transformation mechanism in (Mg,Fe)2SiO4 , 1982, Nature.

[23]  J. Poirier On the kinetics of olivine-spinel transition , 1981 .

[24]  J. Poirier,et al.  Olivine glass and spinel formed in a laser heated, diamond-anvil high pressure cell , 1980, Nature.

[25]  A. Putnis,et al.  Electron petrography of shock-produced veins in the Tenham chondrite , 1979 .

[26]  A. Putnis,et al.  High-pressure (Mg, Fe)2SiO4 phases in the Tenham chondritic meteorite , 1979, Nature.

[27]  R. Burns,et al.  Kinetics of the olivine→spinel transition: Implications to deep-focus earthquake genesis , 1976 .

[28]  A. J. McCaffery Raman spectra , 1974, Nature.

[29]  N. Carter Static deformation of silica and silicates , 1971 .