SPOON-FEEDING GIANT STARS TO SUPERMASSIVE BLACK HOLES: EPISODIC MASS TRANSFER FROM EVOLVING STARS AND THEIR CONTRIBUTION TO THE QUIESCENT ACTIVITY OF GALACTIC NUCLEI

Stars may be tidally disrupted if, in a single orbit, they are scattered too close to a supermassive black hole (SMBH). Tidal disruption events are thought to power luminous but short-lived accretion episodes that can light up otherwise quiescent SMBHs in transient flares. Here we explore a more gradual process of tidal stripping where stars approach the tidal disruption radius by stellar evolution while in an eccentric orbit. After the onset of mass transfer, these stars episodically transfer mass to the SMBH every pericenter passage, giving rise to low-level flares that repeat on the orbital timescale. Giant stars, in particular, will exhibit a runaway response to mass loss and “spoon-feed” material to the black hole for tens to hundreds of orbital periods. In contrast to full tidal disruption events, the duty cycle of this feeding mode is of order unity for black holes Mbh ≳ 107 M☉. This mode of quasi-steady SMBH feeding is competitive with indirect SMBH feeding through stellar winds, and spoon-fed giant stars may play a role in determining the quiescent luminosity of local SMBHs.

[1]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[2]  L. Siess,et al.  Mass transfer in eccentric binary systems using the binary evolution code BINSTAR , 2013, 1305.6092.

[3]  C. Matzner,et al.  EVOLUTION OF ACCRETION DISKS IN TIDAL DISRUPTION EVENTS , 2013, 1305.5570.

[4]  J. Guillochon,et al.  TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS , 2013, 1305.4634.

[5]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[6]  P. Coppi,et al.  THE IMPACT OF BOUND STELLAR ORBITS AND GENERAL RELATIVITY ON THE TEMPORAL BEHAVIOR OF TIDAL DISRUPTION FLARES , 2013, 1303.4837.

[7]  D. Merritt,et al.  THE LOSS-CONE PROBLEM IN AXISYMMETRIC NUCLEI , 2013, 1301.3150.

[8]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[9]  A. Loeb,et al.  Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits , 2012, 1210.1333.

[10]  A. Loeb,et al.  Accumulated tidal heating of stars over multiple pericentre passages near SgrA , 2012, 1209.1104.

[11]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[12]  D. Merritt,et al.  RELATIVITY AND THE EVOLUTION OF THE GALACTIC CENTER S-STAR ORBITS , 2012, 1211.4594.

[13]  J. Guillochon,et al.  ON THE SURVIVABILITY AND METAMORPHISM OF TIDALLY DISRUPTED GIANT PLANETS: THE ROLE OF DENSE CORES , 2012, 1211.1971.

[14]  F. Pretorius,et al.  DYNAMICAL CAPTURE BINARY NEUTRON STAR MERGERS , 2012, 1208.5279.

[15]  J. Guillochon,et al.  THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION , 2012, 1206.2922.

[16]  J. Guillochon,et al.  THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES , 2012, 1205.1507.

[17]  T. Treu,et al.  AMUSE-Field I: NUCLEAR X-RAY PROPERTIES OF LOCAL FIELD AND GROUP SPHEROIDS ACROSS THE STELLAR MASS SCALE , 2011, 1112.3985.

[18]  R. Blandford,et al.  Adiabatic evolution of mass-losing stars , 2011, 1110.2582.

[19]  R. Blandford,et al.  Roche Accretion of stars close to massive black holes , 2011, 1110.2614.

[20]  J. Pacheco,et al.  TIDAL DISRUPTION FLARES: THE ACCRETION DISK PHASE , 2011, 1105.2060.

[21]  Douglas N. C. Lin,et al.  CONSEQUENCES OF THE EJECTION AND DISRUPTION OF GIANT PLANETS , 2010, 1012.2382.

[22]  M. Mateo,et al.  MASSIVE BLACK HOLES IN STELLAR SYSTEMS: “QUIESCENT” ACCRETION AND LUMINOSITY , 2010, 1011.4311.

[23]  Y. Levin,et al.  SECULAR STELLAR DYNAMICS NEAR A MASSIVE BLACK HOLE , 2010, 1010.1535.

[24]  D. Merritt,et al.  TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS , 2010, 1008.5369.

[25]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[26]  C. Lajoie,et al.  MASS TRANSFER IN BINARY STARS USING SMOOTHED PARTICLE HYDRODYNAMICS. II. ECCENTRIC BINARIES , 2010, 1011.2204.

[27]  A. Seth GAS ACCRETION IN THE M32 NUCLEUS: PAST AND PRESENT , 2010, 1010.1252.

[28]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[29]  E. Quataert,et al.  Spectroscopic Signatures of the Tidal Disruption of Stars by Massive Black Holes , 2010, 1008.4131.

[30]  K. Menou,et al.  White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation , 2010, 1005.3987.

[31]  V. Kalogera,et al.  INTERACTING BINARIES WITH ECCENTRIC ORBITS. III. ORBITAL EVOLUTION DUE TO DIRECT IMPACT AND SELF-ACCRETION , 2010, 1005.0625.

[32]  D. Merritt,et al.  ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI , 2010, 1005.0040.

[33]  F. Baganoff,et al.  INFLOW–OUTFLOW MODEL WITH CONDUCTION AND SELF-CONSISTENT FEEDING FOR Sgr A* , 2010, 1004.0702.

[34]  William H. Lee,et al.  SHORT GAMMA-RAY BURSTS FROM DYNAMICALLY ASSEMBLED COMPACT BINARIES IN GLOBULAR CLUSTERS: PATHWAYS, RATES, HYDRODYNAMICS, AND COSMOLOGICAL SETTING , 2009, 0909.2884.

[35]  R. Blandford,et al.  Quasi-periodic flares from star-accretion-disc collisions , 2009, 0906.0800.

[36]  L. Ho,et al.  RADIATIVELY INEFFICIENT ACCRETION IN NEARBY GALAXIES , 2009, 0906.4104.

[37]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[38]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[39]  V. Kalogera,et al.  INTERACTING BINARIES WITH ECCENTRIC ORBITS. II. SECULAR ORBITAL EVOLUTION DUE TO NON-CONSERVATIVE MASS TRANSFER , 2009, 0903.0621.

[40]  S. Rosswog,et al.  THE STAR INGESTING LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2008, 0808.3847.

[41]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[42]  Y. Levin,et al.  A NEW SECULAR INSTABILITY OF ECCENTRIC STELLAR DISKS AROUND SUPERMASSIVE BLACK HOLES, WITH APPLICATION TO THE GALACTIC CENTER , 2008, 0812.3395.

[43]  M. Davies,et al.  Red giant stellar collisions in the Galactic Centre , 2008, 0811.3111.

[44]  D. Kasen,et al.  THREE-DIMENSIONAL SIMULATIONS OF TIDALLY DISRUPTED SOLAR-TYPE STARS AND THE OBSERVATIONAL SIGNATURES OF SHOCK BREAKOUT , 2008, 0811.1370.

[45]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[46]  R. Michael Rich,et al.  The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End , 2007, 0706.3894.

[47]  Sergei Nayakshin,et al.  Variable accretion and emission from the stellar winds in the Galactic Centre , 2007, 0705.0769.

[48]  A. Eckart,et al.  The structure of the nuclear stellar cluster of the Milky Way , 2006, Proceedings of the International Astronomical Union.

[49]  L. Ho,et al.  Contribution of Stellar Tidal Disruptions to the X-Ray Luminosity Function of Active Galaxies , 2006, astro-ph/0602289.

[50]  M. Elvis,et al.  Accretion and Nuclear Activity of Quiescent Supermassive Black Holes. I. X-Ray Study , 2005, astro-ph/0511293.

[51]  J. Cuadra,et al.  Galactic Centre stellar winds and Sgr A* accretion , 2005 .

[52]  J. Cuadra,et al.  Accretion of cool stellar winds on to Sgr A*: another puzzle of the Galactic Centre? , 2005, astro-ph/0502044.

[53]  J. Faber,et al.  Tidal interactions and disruptions of giant planets on highly eccentric orbits , 2004, astro-ph/0407318.

[54]  S. Mahadevan,et al.  Tidal Disruption of a Star by a Black Hole: Observational Signature , 2004, astro-ph/0404256.

[55]  E. Quataert,et al.  A Dynamical Model for Hot Gas in the Galactic Center , 2003, astro-ph/0310446.

[56]  Michael S. Warren,et al.  Diffuse X-Rays from the Inner 3 Parsecs of the Galaxy , 2003, astro-ph/0309497.

[57]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[58]  E. Regős,et al.  Mass transfer in eccentric binary stars , 2005 .

[59]  A. Loeb Direct feeding of the black hole at the Galactic Centre with radial gas streams from close‐in stellar winds , 2003, astro-ph/0311512.

[60]  T. Alexander,et al.  Squeezars: Tidally Powered Stars Orbiting a Massive Black Hole , 2003, astro-ph/0305061.

[61]  T. Alexander,et al.  Orbital In-spiral into a Massive Black Hole in a Galactic Center , 2003, astro-ph/0305062.

[62]  U. Bern,et al.  A new Monte Carlo code for star cluster simulations - II. Central black hole and stellar collisions , 2002, astro-ph/0204292.

[63]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[64]  UCLA,et al.  Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.

[65]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[66]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[67]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[68]  T. Alexander,et al.  Tidal Spin-up of Stars in Dense Stellar Cusps around Massive Black Holes , 2000, astro-ph/0004240.

[69]  M. Davies,et al.  Red giant collisions in the Galactic Centre , 1999, astro-ph/9907309.

[70]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[71]  D. Syer,et al.  Tidal disruption rates of stars in observed galaxies , 1998, astro-ph/9812389.

[72]  E. Quataert,et al.  Spectral Models of Advection-dominated Accretion Flows with Winds , 1998, astro-ph/9810136.

[73]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[74]  M. Davies,et al.  The destructive effects of binary encounters on red giants in the Galactic Centre , 1998 .

[75]  Robert F. Coker,et al.  Hydrodynamical Accretion onto Sagittarius A* from Distributed Point Sources , 1997, astro-ph/9708089.

[76]  Jonathan E. Grindlay,et al.  Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.

[77]  Kevin P. Rauch,et al.  Resonant tidal disruption in galactic nuclei , 1996 .

[78]  S. Tremaine,et al.  The centers of early-type galaxies with HST. IV. Central parameter relations , 1996, astro-ph/9610055.

[79]  W. Zurek,et al.  Red Giant--Disk Encounters: Food for Quasars? , 1996, astro-ph/9605137.

[80]  P. Podsiadlowski The response of tidally heated stars , 1996 .

[81]  A. Khokhlov,et al.  Weak Tidal Encounters of a Star with a Massive Black Hole , 1993 .

[82]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[83]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[84]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[85]  S. McMillan,et al.  Formation and evolution of tidal binary systems , 1987 .

[86]  M. S. Hjellming,et al.  Thresholds for rapid mass transfer in binary systems. I. Polytropic models , 1987 .

[87]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[88]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[89]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[90]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[91]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[92]  W. Axford,et al.  The Theory of Stellar Winds and Related Flows , 1970 .