Driving bifurcating parametrized nonlinear PDEs by optimal control strategies: application to Navier-Stokes equations with model order reduction

This work deals with optimal control problems as a strategy to drive bifurcating solution of nonlinear parametrized partial differential equations towards a desired branch. Indeed, for these governing equations, multiple solution configurations can arise from the same parametric instance. We thus aim at describing how optimal control allows to change the solution profile and the stability of state solution branches. First of all, a general framework for nonlinear optimal control problem is presented in order to reconstruct each branch of optimal solutions, discussing in detail the stability properties of the obtained controlled solutions. Then, we apply the proposed framework to several optimal control problems governed by bifurcating Navier-Stokes equations in a sudden-expansion channel, describing the qualitative and quantitative effect of the control over a pitchfork bifurcation and commenting in detail the stability eigenvalue analysis of the controlled state. Finally, we propose reduced order modeling as a tool to efficiently and reliably solve parametric stability analysis of such optimal control systems, which can be unbearable to perform with standard discretization techniques such as Finite Element Method.

[1]  G. Rozza,et al.  Model order reduction for bifurcating phenomena in fluid‐structure interaction problems , 2021, International journal for numerical methods in fluids.

[2]  Gianluigi Rozza,et al.  An artificial neural network approach to bifurcating phenomena in computational fluid dynamics , 2021, Computers & Fluids.

[3]  Annalisa Quaini,et al.  A Reduced Order Modeling Technique to Study Bifurcating Phenomena: Application to the Gross-Pitaevskii Equation , 2020, SIAM J. Sci. Comput..

[4]  G. Rozza,et al.  POD-Galerkin model order reduction for parametrized nonlinear time-dependent optimal flow control: an application to shallow water equations , 2020, J. Num. Math..

[5]  Gianluigi Rozza,et al.  Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences , 2019, ENUMATH.

[6]  Martin W. Hess,et al.  Efficient computation of bifurcation diagrams with a deflated approach to reduced basis spectral element method , 2019, Advances in Computational Mathematics.

[7]  G. Rozza,et al.  Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient‐specific data assimilation , 2019, International journal for numerical methods in biomedical engineering.

[8]  Annalisa Quaini,et al.  Reduced basis model order reduction for Navier–Stokes equations in domains with walls of varying curvature , 2019, International Journal of Computational Fluid Dynamics.

[9]  Annalisa Quaini,et al.  A localized reduced-order modeling approach for PDEs with bifurcating solutions , 2018, Computer Methods in Applied Mechanics and Engineering.

[10]  Gianluigi Rozza,et al.  Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations , 2018, Journal of Scientific Computing.

[11]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Elliptic Optimal Control Problems with Distributed Controls , 2017, Journal of Scientific Computing.

[12]  Gianluigi Rozza,et al.  Model Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering , 2017, SIAM J. Sci. Comput..

[13]  Annalisa Quaini,et al.  Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: Applications to Coanda effect in cardiology , 2017, J. Comput. Phys..

[14]  Gianluigi Rozza,et al.  On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics , 2017, J. Sci. Comput..

[15]  P. E. Farrell,et al.  Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[16]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Distributed Elliptic Optimal Control Problems with Control Constraints , 2016, SIAM J. Sci. Comput..

[17]  Annalisa Quaini,et al.  Symmetry breaking and preliminary results about a Hopf bifurcation for incompressible viscous flow in an expansion channel , 2016 .

[18]  Gianluigi Rozza,et al.  RBniCS - reduced order modelling in FEniCS , 2015 .

[19]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[20]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[21]  A. J. Wathen,et al.  Preconditioning , 2015, Acta Numerica.

[22]  Gianluigi Rozza,et al.  Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations , 2015, Comput. Math. Appl..

[23]  J. Lenells The defocusing nonlinear Schr\"odinger equation with $t$-periodic data: New exact solutions , 2014, 1412.3149.

[24]  Mark Kärcher,et al.  A certified reduced basis method for parametrized elliptic optimal control problems , 2014 .

[25]  Dominique Chapelle,et al.  A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation , 2013 .

[26]  Gianluigi Rozza,et al.  Reduced Basis Method for Parametrized Elliptic Optimal Control Problems , 2013, SIAM J. Sci. Comput..

[27]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[28]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Saddle Point Problems , 2012, SIAM J. Sci. Comput..

[29]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[30]  Edward L. Reiss,et al.  Nonlinear Buckling of Rectangular Plates , 2011 .

[31]  D. J. Frantzeskakis,et al.  Emergence and stability of vortex clusters in Bose–Einstein condensates: A bifurcation approach near the linear limit , 2010, 1012.1840.

[32]  Luca Dedè,et al.  Reduced Basis Method and A Posteriori Error Estimation for Parametrized Linear-Quadratic Optimal Control Problems , 2010, SIAM J. Sci. Comput..

[33]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[34]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[35]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[36]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[37]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[38]  Michele Benzi,et al.  On the eigenvalues of a class of saddle point matrices , 2006, Numerische Mathematik.

[39]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[40]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[41]  Max Gunzburger,et al.  Adjoint Equation-Based Methods for Control Problems in Incompressible, Viscous Flows , 2000 .

[42]  Joseph E. Pasciak,et al.  Uzawa type algorithms for nonsymmetric saddle point problems , 2000, Math. Comput..

[43]  L. Hou,et al.  Boundary Value Problems and Optimal Boundary Control for the Navier--Stokes System: the Two-Dimensional Case , 1998 .

[44]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .

[45]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[46]  Melvyn S. Berger,et al.  On von kármán's equations and the buckling of a thin elastic plate, I the clamped plate , 1967 .

[47]  Paul C. Fife,et al.  On von Karman's equations and the buckling of a thin elastic plate , 1966 .

[48]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[49]  Luca Faust,et al.  Physical Fluid Dynamics , 2016 .

[50]  Eduard Bader,et al.  A Certified Reduced Basis Approach for Parametrized Linear–Quadratic Optimal Control Problems with Control Constraints (two-sided) , 2015 .

[51]  Andreas Griewank,et al.  Trends in PDE Constrained Optimization , 2014 .

[52]  Martin Stoll,et al.  All-at-once solution of time-dependent Stokes control , 2013, J. Comput. Phys..

[53]  P. Philip Optimal Control of Partial Dierential Equations , 2013 .

[54]  M. Benzi,et al.  Some Preconditioning Techniques for Saddle Point Problems , 2008 .

[55]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[56]  Annalisa Quaini,et al.  Reduced basis methods for optimal control of advection-diffusion problems ∗ , 2007 .

[57]  Hansjörg Kielhöfer,et al.  Bifurcation theory : an introduction with applications to PDEs , 2004 .

[58]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[59]  J. Rappaz,et al.  Numerical analysis for nonlinear and bifurcation problems , 1997 .

[60]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[61]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[62]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[63]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[64]  T. Kármán Festigkeitsprobleme im Maschinenbau , 1907 .