Revisiting Call-by-value Bohm trees in light of their Taylor expansion
暂无分享,去创建一个
Giulio Manzonetto | Michele Pagani | Emma Kerinec | Giulio Manzonetto | Michele Pagani | Axel Kerinec
[1] Luca Paolini,et al. Call-by-Value Separability and Computability , 2001, ICTCS.
[2] H. Barendregt. The type free lambda calculus , 1977 .
[3] Simona Ronchi Della Rocca,et al. Standardization and Conservativity of a Refined Call-by-Value lambda-Calculus , 2016, Log. Methods Comput. Sci..
[4] Thomas Ehrhard,et al. Uniformity and the Taylor expansion of ordinary lambda-terms , 2008, Theor. Comput. Sci..
[5] Paolo Tranquilli,et al. Nets between determinism and nondeterminism , 2009 .
[6] Laurent Regnier,et al. The differential lambda-calculus , 2003, Theor. Comput. Sci..
[7] Simona Ronchi Della Rocca,et al. Call-by-value Solvability , 1999, RAIRO Theor. Informatics Appl..
[8] Giulio Manzonetto,et al. New Semantical Insights Into Call-by-Value λ-Calculus , 2019, Fundam. Informaticae.
[9] Beniamino Accattoli,et al. Implementing Open Call-by-Value , 2017, FSEN.
[10] Maribel Fernández. The Lambda Calculus , 2009 .
[11] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[12] Alberto Carraro,et al. A Semantical and Operational Account of Call-by-Value Solvability , 2014, FoSSaCS.
[13] Giulio Manzonetto,et al. Böhm's Theorem for Resource Lambda Calculus through Taylor Expansion , 2011, TLCA.
[14] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[15] Torben Æ. Mogensen. Efficient self-interpretation in lambda calculus , 1992, Journal of Functional Programming.
[16] Michele Pagani,et al. A characterization of the Taylor expansion of lambda-terms , 2013, CSL.
[17] Søren B. Lassen,et al. Bisimulation in Untyped Lambda Calculus: Böhm Trees and Bisimulation up to Context , 1999, MFPS.
[18] Laurent Regnier,et al. Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..
[19] Søren B. Lassen,et al. Eager normal form bisimulation , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).
[20] Thomas Ehrhard,et al. Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms , 2006, CiE.
[21] Roberto M. Amadio,et al. Domains and Lambda-Calculi (Cambridge Tracts in Theoretical Computer Science) , 2008 .
[22] J. Roger Hindley,et al. Lambda calculus with types (Perspectives in Logic) , 2014 .
[23] Peter Aczel etc. HANDBOOK OF MATHEMATICAL LOGIC , 1999 .
[24] Luca Paolini,et al. Parametric λ-Theories , 2007 .
[25] Thomas Ehrhard,et al. Collapsing non-idempotent intersection types , 2012, CSL.
[26] Beniamino Accattoli,et al. Implementing Open Call-by-Value (Extended Version) , 2017, ArXiv.