The KPZ fixed point

An explicit Fredholm determinant formula is derived for the multipoint distribution of the height function of the totally asymmetric simple exclusion process with arbitrary initial condition. The method is by solving the biorthogonal ensemble/non-intersecting path representation found by [Sas05; BFPS07]. The resulting kernel involves transition probabilities of a random walk forced to hit a curve defined by the initial data. In the KPZ 1:2:3 scaling limit the formula leads in a transparent way to a Fredholm determinant formula, in terms of analogous kernels based on Brownian motion, for the transition probabilities of the scaling invariant Markov process at the centre of the KPZ universality class. The formula readily reproduces known special self-similar solutions such as the Airy$_1$ and Airy$_2$ processes. The invariant Markov process takes values in real valued functions which look locally like Brownian motion, and is H\"older $1/3-$ in time.

[1]  C. Tracy,et al.  Integral Formulas for the Asymmetric Simple Exclusion Process , 2007, 0704.2633.

[2]  T. Liggett Interacting Particle Systems , 1985 .

[3]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[4]  K. Johansson The two-time distribution in geometric last-passage percolation , 2018, Probability Theory and Related Fields.

[5]  Fluctuation Properties of the TASEP with Periodic Initial Configuration , 2006, math-ph/0608056.

[6]  K. Johansson Two Time Distribution in Brownian Directed Percolation , 2015, 1502.00941.

[7]  Dong Wang,et al.  Fluctuations of TASEP and LPP with general initial data , 2014, 1412.5087.

[8]  Typeset By,et al.  Hydrodynamic Scaling, Convex Duality, and Asymptotic Shapes of Growth Models , 1996 .

[9]  KdV Preserves White Noise , 2006, math/0611152.

[10]  Ergodicity of the KPZ Fixed Point , 2017, Latin American Journal of Probability and Mathematical Statistics.

[11]  T. Liggett Coupling the Simple Exclusion Process , 1976 .

[12]  Gunter M. Schutz Exact Solution of the Master Equation for the Asymmetric Exclusion Process , 1997 .

[13]  Ivan Corwin,et al.  KPZ equation limit of higher-spin exclusion processes , 2015, 1505.04158.

[14]  Johannes Martinus Burgers,et al.  The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems , 1974 .

[15]  Fluctuations of the one-dimensional polynuclear growth model with external sources , 2004, math-ph/0406001.

[16]  A. Borodin,et al.  Multiplicative functionals on ensembles of non-intersecting paths , 2013, 1301.7450.

[17]  Fluctuations of the One-Dimensional Polynuclear Growth Model in Half-Space , 2003, cond-mat/0307011.

[18]  ASEP(q,j) converges to the KPZ equation , 2016, 1602.01908.

[19]  Scaling Limit for the Space-Time Covariance of the Stationary Totally Asymmetric Simple Exclusion Process , 2006 .

[20]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[21]  M. Jara,et al.  Density fluctuations for exclusion processes with long jumps , 2015, 1503.05838.

[22]  Craig A. Tracy,et al.  Asymptotics in ASEP with Step Initial Condition , 2008, 0807.1713.

[23]  G. Giacomin,et al.  Stochastic Burgers and KPZ Equations from Particle Systems , 1997 .

[24]  J. Quastel,et al.  How flat is flat in random interface growth? , 2016, Transactions of the American Mathematical Society.

[25]  Kurt Johansson Discrete Polynuclear Growth and Determinantal Processes , 2003 .

[26]  Eric M. Rains,et al.  Symmetrized Random Permutations , 1999 .

[27]  A. Borodin,et al.  Fluctuations in the Discrete TASEP with Periodic Initial Configurations and the Airy1 Process , 2006, math-ph/0611071.

[28]  H. Spohn,et al.  The one-dimensional KPZ equation and the Airy process , 2011, 1101.4622.

[29]  Martin Hairer,et al.  A CLASS OF GROWTH MODELS RESCALING TO KPZ , 2015, Forum of Mathematics, Pi.

[30]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[31]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[32]  C. Tracy,et al.  A Fredholm Determinant Representation in ASEP , 2008, 0804.1379.

[33]  A. Hammond A PATCHWORK QUILT SEWN FROM BROWNIAN FABRIC: REGULARITY OF POLYMER WEIGHT PROFILES IN BROWNIAN LAST PASSAGE PERCOLATION , 2017, Forum of Mathematics, Pi.

[34]  L. Frachebourg,et al.  Exact statistical properties of the Burgers equation , 1999, Journal of Fluid Mechanics.

[35]  J. Quastel,et al.  Continuum Statistics of the Airy2 Process , 2011, 1106.2717.

[36]  J. Quastel,et al.  Local behavior and hitting probabilities of the Airy1 process , 2012, 1201.4709.

[37]  M. Nica,et al.  Intermediate disorder directed polymers and the multi-layer extension of the stochastic heat equation , 2016, 1603.08168.

[38]  David R. Nelson,et al.  Large-distance and long-time properties of a randomly stirred fluid , 1977 .

[39]  J. Quastel,et al.  Supremum of the Airy2 Process Minus a Parabola on a Half Line , 2011, 1111.2565.

[40]  Transition between Airy1 and Airy2 processes and TASEP fluctuations , 2007, math-ph/0703023.

[41]  J. Baik,et al.  Limit process of stationary TASEP near the characteristic line , 2009, 0907.0226.

[42]  The intermediate disorder regime for directed polymers in dimension $1+1$ , 2010, 1003.1885.

[43]  A. Borodin,et al.  Two Speed TASEP , 2009, 0904.4655.

[44]  J. Quastel,et al.  Renormalization Fixed Point of the KPZ Universality Class , 2011, 1103.3422.

[45]  Martin Hairer,et al.  A theory of regularity structures , 2013, 1303.5113.

[46]  21pYO-3 Spatial correlations of the 1D KPZ surface on a flat substrate , 2005, cond-mat/0504417.

[47]  S. Péché,et al.  Limit Processes for TASEP with Shocks and Rarefaction Fans , 2010, 1002.3476.

[48]  S. Prolhac,et al.  Spectrum of the totally asymmetric simple exclusion process on a periodic lattice-first excited states , 2014, 1404.1315.

[49]  J. Quastel,et al.  Local behavior and hitting probabilities of the $$\text{ Airy}_1$$ process , 2013 .

[50]  J. Quastel,et al.  Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions , 2010, 1003.0443.

[51]  B. Simon Trace ideals and their applications , 1979 .

[52]  P. Ferrari Dimers and orthogonal polynomials: connections with random matrices , 2010, 1004.3212.

[53]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[54]  J. Quastel,et al.  Airy processes and variational problems , 2013, 1301.0750.