Simpler Quad Layouts using Relaxed Singularities

A common approach to automatic quad layout generation on surfaces is to, in a first stage, decide on the positioning of irregular layout vertices, followed by finding sensible layout edges connecting these vertices and partitioning the surface into quadrilateral patches in a second stage. While this two‐step approach reduces the problem's complexity, this separation also limits the result quality. In the worst case, the set of layout vertices fixed in the first stage without consideration of the second may not even permit a valid quad layout. We propose an algorithm for the creation of quad layouts in which the initial layout vertices can be adjusted in the second stage. Whenever beneficial for layout quality or even validity, these vertices may be moved within a prescribed radius or even be removed. Our algorithm is based on a robust quantization strategy, turning a continuous T‐mesh structure into a discrete layout. We show the effectiveness of our algorithm on a variety of inputs.

[1]  Eugene Zhang,et al.  Connectivity editing for quadrilateral meshes , 2011, ACM Trans. Graph..

[2]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[3]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[4]  David Bommes,et al.  Global Structure Optimization of Quadrilateral Meshes , 2011, Comput. Graph. Forum.

[5]  Daniele Panozzo,et al.  Practical quad mesh simplification , 2010, Comput. Graph. Forum.

[6]  Olga Sorkine-Hornung,et al.  Designing N‐PolyVector Fields with Complex Polynomials , 2014, Comput. Graph. Forum.

[7]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[8]  David Bommes,et al.  Quantized global parametrization , 2015, ACM Trans. Graph..

[9]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[10]  Valerio Pascucci,et al.  Edge maps: Representing flow with bounded error , 2011, 2011 IEEE Pacific Visualization Symposium.

[11]  Marcel Campen,et al.  Partitioning Surfaces Into Quadrilateral Patches: A Survey , 2017, Comput. Graph. Forum.

[12]  David Bommes,et al.  Level-of-detail quad meshing , 2014, ACM Trans. Graph..

[13]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[14]  Quad Layouts via Constrained T‐Mesh Quantization , 2021, Comput. Graph. Forum.

[15]  Konrad Polthier,et al.  Perfect Matching Quad Layouts for Manifold Meshes , 2015, SGP '15.

[16]  Daniele Panozzo,et al.  Simple quad domains for field aligned mesh parametrization , 2011, ACM Trans. Graph..

[17]  Daniele Panozzo,et al.  Directional Field Synthesis, Design, and Processing , 2016, Comput. Graph. Forum.

[18]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[19]  Cláudio T. Silva,et al.  Quadrilateral mesh simplification , 2008, SIGGRAPH 2008.

[20]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[21]  Konrad Polthier,et al.  Optimal base complexes for quadrilateral meshes , 2017, Comput. Aided Geom. Des..

[22]  Braxton Osting,et al.  Coarse Quad Layouts Through Robust Simplification of Cross Field Separatrix Partitions , 2019, ArXiv.

[23]  David Eppstein,et al.  Motorcycle Graphs: Canonical Quad Mesh Partitioning , 2008, Comput. Graph. Forum.

[24]  Paolo Cignoni,et al.  Tracing Field‐Coherent Quad Layouts , 2016, Comput. Graph. Forum.

[25]  Marcel Campen,et al.  Exact Constraint Satisfaction for Truly Seamless Parametrization , 2019, Comput. Graph. Forum.

[26]  Leif Kobbelt,et al.  OpenFlipper: An Open Source Geometry Processing and Rendering Framework , 2010, Curves and Surfaces.

[27]  Dmitry Sokolov,et al.  Robust Polylines Tracing for N-Symmetry Direction Field on Triangulated Surfaces , 2013, ACM Trans. Graph..

[28]  David Bommes,et al.  Parametrization quantization with free boundaries for trimmed quad meshing , 2019, ACM Trans. Graph..

[29]  Elaine Cohen,et al.  Localized Quadrilateral Coarsening , 2009, Comput. Graph. Forum.