Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range

There is a need for fast and reliable quality and authenticity control tools of pharmaceutical ingredients. Among others, hormone containing drugs and foods are subject to scrutiny. In this study, terahertz (THz) spectroscopy and THz imaging are applied for the first time to analyze melatonin and its pharmaceutical product Circadin. Melatonin is a hormone found naturally in the human body, which is responsible for the regulation of sleep-wake cycles. In the THz frequency region between 1.5 THz and 4.5 THz, characteristic melatonin spectral features at 3.21 THz, and a weaker one at 4.20 THz, are observed allowing for a quantitative analysis within the final products. Spectroscopic THz imaging of different concentrations of Circadin and melatonin as an active pharmaceutical ingredient in prepared pellets is also performed, which permits spatial recognition of these different substances. These results indicate that THz spectroscopy and imaging can be an indispensable tool, complementing Raman and Fourier transform infrared spectroscopies, in order to provide quality control of dietary supplements and other pharmaceutical products.

[1]  M. Malet‐Martino,et al.  Counterfeit drugs: analytical techniques for their identification , 2010, Analytical and bioanalytical chemistry.

[2]  Gintaras Valušis,et al.  Investigation of pharmaceutical drugs and caffeine-containing foods using Fourier and terahertz time-domain spectroscopy , 2015, SPIE Optical Engineering + Applications.

[3]  O. Cherkasova,et al.  THz and Raman Spectroscopy in Steroid Chemistry , 2012 .

[4]  Thomas Rades,et al.  Drug hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy. , 2007, International journal of pharmaceutics.

[5]  P. Taday,et al.  Terahertz Pulsed Spectroscopy of Human Basal Cell Carcinoma , 2006, Applied spectroscopy.

[6]  C. H. Zhang,et al.  Mode assignment of terahertz spectrum of α-lactose monohydrate , 2009, 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves.

[7]  O. Cherkasova,et al.  Terahertz time-domain spectroscopy of testosterone, estradiol and estriol , 2010, 2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES.

[8]  C. Hauri,et al.  Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications , 2016 .

[9]  B. Patel,et al.  Rapid voltammetric monitoring of melatonin in the presence of tablet excipients , 2012 .

[10]  P. Taday,et al.  Coating and Density Distribution Analysis of Commercial Ciprofloxacin Hydrochloride Monohydrate Tablets by Terahertz Pulsed Spectroscopy and Imaging , 2012, Journal of Pharmaceutical Innovation.

[11]  He Wang,et al.  THz spectra of parabens at low temperature , 2011, Science China Information Sciences.

[12]  D. A. Sapozhnikov,et al.  Lowest-lying vibrational signatures in corticosteroids studied by terahertz time-domain and Raman spectroscopies , 2012 .

[13]  J. Zeitler,et al.  Pharmaceutical Terahertz Spectroscopy and Imaging , 2016 .

[14]  Li Jiusheng,et al.  Optical Parameters of Vegetable Oil Studied by Terahertz Time-Domain Spectroscopy , 2010, Applied spectroscopy.

[15]  Thomas Rades,et al.  An overview of recent studies on the analysis of pharmaceutical polymorphs. , 2011, Journal of pharmaceutical and biomedical analysis.

[16]  Katsuhiro Ajito,et al.  Terahertz Spectroscopy for Pharmaceutical and Biomedical Applications , 2015, IEEE Transactions on Terahertz Science and Technology.

[17]  Wenhui Fan,et al.  Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. , 2009, The Analyst.

[18]  S. Gorog,et al.  Advances in the analysis of steroid hormone drugs in pharmaceuticals and environmental samples (2004-2010). , 2011, Journal of pharmaceutical and biomedical analysis.

[19]  Gintaras Valušis,et al.  Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques. , 2015, Applied optics.

[20]  Z. Lavrič,et al.  Application of 14N NQR to the study of piroxicam polymorphism. , 2010, Journal of pharmaceutical sciences.

[21]  I. Abdulhalim,et al.  Modeling of reflectometric and ellipsometric spectra from the skin in the terahertz and submillimeter waves region. , 2011, Journal of biomedical optics.

[22]  Ivan Biaggio,et al.  Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal , 2004 .

[23]  Kirill I. Zaytsev,et al.  Solid immersion terahertz imaging with sub-wavelength resolution , 2017 .

[24]  Maxim M. Nazarov,et al.  Terahertz spectroscopy for diabetes diagnostics , 2017 .

[25]  T. Korter,et al.  Understanding the Origins of Conformational Disorder in the Crystalline Polymorphs of Irbesartan , 2012 .

[26]  E. Tamechika,et al.  Terahertz Spectroscopic Imaging of Polymorphic Forms in Pharmaceutical Crystals , 2011 .

[27]  F. Severcan,et al.  Concentration-dependent effect of melatonin on DSPC membrane , 2013 .

[28]  Z. Lavrič,et al.  (14) N nuclear quadrupole resonance study of piroxicam: confirmation of new polymorphic form V. , 2015, Journal of pharmaceutical sciences.

[29]  Aleksander Sesek,et al.  Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues , 2016, Sensors.

[30]  Yiqi Zhou,et al.  Separation and determination of estrogen in the water environment by high performance liquid chromatography-fourier transform infrared spectroscopy , 2016, Scientific Reports.

[31]  A. Jeglic,et al.  Structural analysis of insulating polymer foams with terahertz spectroscopy and imaging , 2013 .

[32]  Edyta Pindelska,et al.  Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques , 2017, Advanced drug delivery reviews.

[33]  K. Kawase,et al.  Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. , 2003, Optics express.

[34]  I. A. Ozheredov,et al.  Characteristic responses of biological and nanoscale systems in the terahertz frequency range , 2014 .

[35]  P. Hildebrandt,et al.  Comparative vibrational analysis of thyronine hormones using infrared and Raman spectroscopy and density functional theory calculations , 2004 .

[36]  E. Kolehmainen,et al.  High-Resolution Solid-State NMR Spectroscopy of Steroids and Their Derivatives , 2013 .

[37]  Thomas Rades,et al.  Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials , 2004 .

[38]  Kirill I. Zaytsev,et al.  Spectroscopy of Nafion in terahertz frequency range , 2014 .

[39]  H. Aboul‐Enein,et al.  Simultaneous Analysis of Pyridoxine and Melatonin in Tablet Formulation by Derivative Ultraviolet Spectroscopy , 1998 .

[40]  G. Valusis,et al.  Continuous Wave Spectroscopic Terahertz Imaging With InGaAs Bow-Tie Diodes at Room Temperature , 2013, IEEE Sensors Journal.

[41]  J. Coutaz,et al.  Sub-wavelength terahertz imaging through optical rectification , 2018, Scientific Reports.

[42]  Masae Takahashi,et al.  Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I , 2013 .

[43]  X. Zhang,et al.  THz Wave Near-Field Imaging , 2010 .

[44]  Yuko Ueno,et al.  Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging. , 2013, Analytical chemistry.

[45]  K. Peiponen,et al.  Terahertz study on porosity and mass fraction of active pharmaceutical ingredient of pharmaceutical tablets. , 2016, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[46]  I. Abdulhalim,et al.  Does human skin truly behave as an array of helical antennae in the millimeter and terahertz wave ranges? , 2010, Optics letters.

[47]  S. Kazarian,et al.  Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[48]  S. K. Tripathi,et al.  Vibrational and electronic spectroscopic studies of melatonin. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[49]  Broadband terahertz time-domain spectroscopy of drugs-of-abuse mixtures and ‘street‘ samples , 2008, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves.

[50]  E. V. Fedulova,et al.  Vibrational spectra of corticosteroid hormones in the terahertz range , 2010, Laser Applications in Life Sciences.

[51]  T. Zwier,et al.  Solvation of a Flexible Biomolecule in the Gas Phase: The Ultraviolet and Infrared Spectroscopy of Melatonin−Water Clusters , 2003 .

[52]  I. Chowdhury,et al.  Melatonin: fifty years of scientific journey from the discovery in bovine pineal gland to delineation of functions in human. , 2008, Indian journal of biochemistry & biophysics.

[53]  N. Sarukura,et al.  Identification of Potential Estrogenic Environmental Pollutants by Terahertz Transmission Spectroscopy , 2003 .