PDSim: A general quasi-steady modeling approach for positive displacement compressors and expanders

Abstract A novel generalized framework is presented that can be used to simulate the quasi-steady-state performance of a wide range of positive displacement compressors and expanders (scroll, piston, screw, rotary, spool, etc.). The complete simulation algorithm is described, and an emphasis is placed on the numerical methods required to obtain robust behavior of the simulation. This formulation has been implemented into an open-source software package entitled PDSim written in the Python language. PDSim is the first open-source generalized compressor and expander simulation package and the complete source code is included in the Supplemental material. A piston expander is used as an example of the utilization of this framework. The framework has been applied to several positive displacement machines in the companion paper in order to demonstrate the flexibility of the approach (Ziviani et al., 2019).

[1]  Eckhard A. Groll,et al.  Modeling of an Oil-Free Carbon Dioxide Compressor Using Sanderson-Rocker Arm Motion (S-RAM) Mechanism , 2015 .

[2]  Jürg Alexander Schiffmann Small-Scale and Oil-Free Turbocompressor for Refrigeration Application , 2014 .

[3]  James E. Braun,et al.  Mathematical modeling of scroll compressors. Part I: compression process modeling , 2002 .

[4]  K. Okada,et al.  Motion of Rolling Piston in Rotary Compressor , 1982 .

[5]  P. J. Singh A Digital Reciprocating Compressor Simulation Program Including Suction and Discharge Piping , 1984 .

[6]  B. Hamrock,et al.  Fundamentals of Fluid Film Lubrication , 1994 .

[7]  Chen Dong,et al.  Design and dynamic analysis of a novel double-swing vane compressor for electric vehicle air conditioning systems , 2017 .

[8]  Van-The Tran,et al.  Dynamic response prediction of a twin-screw compressor with gas-induced cyclic loads based on multi-body dynamics , 2016 .

[9]  James E. Braun,et al.  Modeling of a Two-Stage Rotary Compressor , 2008 .

[10]  Craig R. Bradshaw,et al.  A Miniature-Scale Linear Compressor for Electronics Cooling. , 2011 .

[11]  Vincent Lemort,et al.  Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp , 2014, Industrial & engineering chemistry research.

[12]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[13]  Masato Ikegawa,et al.  Computer Modeling of Scroll Compressor with Self Adjusting Back-Pressure Mechanism , 1984 .

[14]  S. Iwamura,et al.  Refrigerant Leakage Flow Evaluation for Scroll Compressors , 1996 .

[15]  Eckhard A. Groll,et al.  A Comprehensive Model of a Novel Rotating Spool Compressor , 2013 .

[16]  Kim Tiow Ooi,et al.  A computer simulation of a rotary compressor for household refrigerators , 1997 .

[17]  E. B. Qvale,et al.  Instantaneous Heat Transfer to the Cylinder Wall in Reciprocating Compressors , 1972 .

[18]  Eckhard A. Groll,et al.  Modeling and analysis of an open-drive Z-compressor , 2017 .

[19]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[20]  James E. Braun,et al.  PDSim: Demonstrating the capabilities of an open-source simulation framework for positive displacement compressors and expanders , 2020 .

[21]  Andreas Brümmer,et al.  Investigating a Small Oil-Flooded Twin-Screw Expander for Waste-Heat Utilisation in Organic Rankine Cycle Systems , 2017 .

[22]  John Boyd,et al.  A Solution for the Finite Journal Bearing and its Application to Analysis and Design: III , 1958 .

[23]  Vincent Lemort,et al.  Liquid flooded compression and expansion in scroll machines – Part II: Experimental testing and model validation , 2012 .

[24]  V. Gnielinski Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen , 1975 .

[25]  James E. Braun,et al.  Mathematical modeling of scroll compressors — part II: overall scroll compressor modeling , 2002 .

[26]  Stephen J. Chapman,et al.  Electric Machinery Fundamentals , 1991 .

[27]  Wen Wang,et al.  Effects of leakage and friction on the miniaturization of a Wankel compressor , 2011 .

[28]  K. Suefuji,et al.  Practical Method for Analysis and Estimation of Reciprocating Hermetic Compressor Performance , 1980 .

[29]  Jian Hu,et al.  Generic network modeling of reciprocating compressors , 2014 .

[30]  Werner Soedel,et al.  Sound and Vibrations of Positive Displacement Compressors , 2006 .

[31]  Roberto Cipollone,et al.  Friction power modeling and measurements in sliding vane rotary compressors , 2015 .

[32]  Ahmed Kovacevic,et al.  Review of Mathematical Models in Performance Calculation of Screw Compressors , 2011 .

[33]  Kim Tiow Ooi,et al.  Analysis of the novel cross vane expander-compressor: Mathematical modelling and experimental study , 2018 .

[34]  Jan Vierendeels,et al.  Development of a thermodynamic low order model for a twin screw expander with emphasis on pulsations in the inlet pipe , 2016 .

[36]  Kim Tiow Ooi,et al.  Heat transfer in compression chamber of a revolving vane (RV) compressor , 2011 .

[37]  Vincent Lemort,et al.  Analysis of Liquid-Flooded Expansion Using a Scroll Expander , 2008 .

[38]  P. Suter,et al.  Experimental Analysis of an Inverter-Driven Scroll Compressor with Liquid Injection , 1992 .

[39]  Eckhard A. Groll,et al.  Modeling of a semi-hermetic CO2 reciprocating compressor including lubrication submodels for piston rings and bearings. , 2013 .

[40]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .

[41]  Richard P. Brent,et al.  An Algorithm with Guaranteed Convergence for Finding a Zero of a Function , 1971, Comput. J..

[42]  R. Liu,et al.  Heat Transfer Between Gas and Cylinder Wall of Refrigerating Reciprocating Compressor , 1984 .

[43]  Yu-Choung Chang,et al.  Design optimization of scroll compressor applied for frictional losses evaluation , 2010 .

[44]  Tadashi Yanagisawa,et al.  Friction losses in rolling piston type rotary compressors. III , 1985 .

[45]  Eric W. Lemmon Pseudo-Pure Fluid Equations of State for the Refrigerant Blends R-410A, R-404A, R-507A, and R-407C , 2003 .

[46]  Alan H. Karp,et al.  A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides , 1990, TOMS.

[47]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[48]  James E. Braun,et al.  Modeling of a novel spool compressor with multiple vapor refrigerant injection ports , 2013 .

[49]  Kenji Tojo,et al.  Performance Analysis of Hermetic Scroll Compressors , 1992 .

[50]  Eckhard A. Groll,et al.  Development of a loss pareto for a rotating spool compressor using high-speed pressure measurements and friction analysis , 2016 .

[51]  R. Shah,et al.  Handbook of single-phase convective heat transfer , 1987 .

[52]  Cesar J. Deschamps,et al.  Numerical modeling of startup and shutdown transients in reciprocating compressors , 2011 .

[53]  Li Zhao,et al.  Simulation analysis of a two-rolling piston expander replacing a throttling valve in a refrigeration and heat pump system , 2014 .

[54]  James E. Braun,et al.  A computationally efficient hybrid leakage model for positive displacement compressors and expanders , 2013 .