Universality of spin correlations in the Ising model on isoradial graphs
暂无分享,去创建一个
[1] D. Ioffe. Stochastic Geometry of Classical and Quantum Ising Models , 2009 .
[2] JON HANDY,et al. THE LAPLACIAN AND DIRAC OPERATORS ON CRITICAL PLANAR GRAPHS , 2005 .
[3] Zhongyan Li. Conformal invariance of dimer heights on isoradial double graphs , 2013, 1309.0151.
[4] Ising Model: Local Spin Correlations and Conformal Invariance , 2013, Communications in Mathematical Physics.
[5] David Cimasoni. The Critical Ising Model via Kac-Ward Matrices , 2012, Communications in Mathematical Physics.
[6] Dmitry Chelkak. 2D Ising model: correlation functions at criticality via Riemann-type boundary value problems , 2016, 1605.09035.
[7] S. Smirnov,et al. Universality in the 2D Ising model and conformal invariance of fermionic observables , 2009, 0910.2045.
[8] B. Tilière. The Z-Dirac and massive Laplacian operators in the Z-invariant Ising model , 2017, Electronic Journal of Probability.
[9] Dmitry Chelkak,et al. Magnetization in the zig-zag layered Ising model and orthogonal polynomials , 2019, 1904.09168.
[10] S. Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.
[11] Jean-Marc Schlenker,et al. Rhombic embeddings of planar quad-graphs , 2004 .
[12] Universality for bond percolation in two dimensions , 2011, 1108.2784.
[13] R. Baxter. Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[14] F. Viklund,et al. Conformal Field Theory at the Lattice Level: Discrete Complex Analysis and Virasoro Structure , 2013, Communications in Mathematical Physics.
[15] K. Raschel,et al. The Z-invariant massive Laplacian on isoradial graphs , 2015, 1504.00792.
[16] K. Raschel,et al. The Z-invariant Ising model via dimers , 2016, Probability Theory and Related Fields.
[17] Stanislav Smirnov,et al. Discrete complex analysis on isoradial graphs , 2008, 0810.2188.
[18] R. J. Duffin,et al. Potential theory on a rhombic lattice , 1968 .
[19] Julien Dubédat. Exact bosonization of the Ising model , 2011, 1112.4399.
[20] C. Tracy,et al. Spin spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region , 1976 .
[21] R. Baxter. Exactly solved models in statistical mechanics , 1982 .
[22] Cédric Boutillier,et al. The critical Z-invariant Ising model via dimers: the periodic case , 2008, 0812.3848.
[23] Clément Hongler,et al. The energy density in the planar Ising model , 2010, 1008.2645.
[24] Cédric Boutillier,et al. Statistical Mechanics on Isoradial Graphs , 2010, 1012.2955.
[25] S. C. Park. Convergence of Fermionic Observables in the Massive Planar FK-Ising Model , 2021, Communications in Mathematical Physics.
[26] Yu. M. Zinoviev,et al. Spontaneous Magnetization in the Two-Dimensional Ising Model , 2003 .
[27] Clément Hongler,et al. Conformal invariance of spin correlations in the planar Ising model , 2012, 1202.2838.
[28] 佐藤 幹夫,et al. Studies on Holonomic Quantum Fields (超局所解析) , 1977 .
[29] S. C. Park. Massive Scaling Limit of the Ising Model: Subcritical Analysis and Isomonodromy. , 2018, 1811.06636.
[30] Julien Dubédat. Dimers and families of Cauchy-Riemann operators I , 2015 .
[31] Cédric Boutillier,et al. The Critical Z-Invariant Ising Model via Dimers: Locality Property , 2009, 0902.1882.
[32] Cl'ement Hongler,et al. Correlations of primary fields in the critical Ising model , 2021, 2103.10263.
[33] Clément Hongler,et al. Conformal Invariance of Ising Model Correlations , 2012 .
[34] Studies on holonomic quantum fields, IV , 1977 .
[35] H. Duminil-Copin,et al. Convergence of Ising interfaces to Schramm's SLE curves , 2013, 1312.0533.
[36] Clément Hongler,et al. The scaling limit of critical Ising interfaces is $\mathrm{CLE}_{3}$ , 2016, The Annals of Probability.
[37] C. Mercat. Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.
[38] Dmitry Chelkak,et al. Dimer model and holomorphic functions on t‐embeddings of planar graphs , 2020, Proceedings of the London Mathematical Society.
[39] L. Kadanoff,et al. SMJ's analysis of Ising model correlation functions , 1980 .
[40] Leo P. Kadanoff,et al. Determination of an Operator Algebra for the Two-Dimensional Ising Model , 1971 .
[41] H. Duminil-Copin,et al. Rotational invariance in critical planar lattice models , 2020, 2012.11672.
[42] H. Duminil-Copin,et al. Universality for the random-cluster model on isoradial graphs , 2017, 1711.02338.
[43] R. Baxter,et al. Solvable eight-vertex model on an arbitrary planar lattice , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[44] H. Duminil-Copin,et al. The Near-Critical Planar FK-Ising Model , 2011, 1111.0144.
[45] Dmitry Chelkak. PLANAR ISING MODEL AT CRITICALITY: STATE-OF-THE-ART AND PERSPECTIVES , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).
[46] E. M. Opdam,et al. The two-dimensional Ising model , 2018, From Quarks to Pions.
[47] David Cimasoni. Discrete Dirac operators on Riemann surfaces and Kasteleyn matrices , 2009, 0909.5339.
[48] Haru T. Pinson. Rotational Invariance of the 2d Spin – Spin Correlation Function , 2012 .
[49] David Cimasoni,et al. Revisiting the combinatorics of the 2D Ising model , 2015, 1507.08242.