Faster algorithms for vertex partitioning problems parameterized by clique-width

Abstract Many NP -hard problems, such as Dominating Set , are FPT parameterized by clique-width. For graphs of clique-width k given with a k-expression, Dominating Set can be solved in 4 k n O ( 1 ) time. However, no FPT algorithm is known for computing an optimal k-expression. For a graph of clique-width k, if we rely on known algorithms to compute a ( 2 3 k − 1 ) -expression via rank-width and then solving Dominating Set using the ( 2 3 k − 1 ) -expression, the above algorithm will only give a runtime of 4 2 3 k n O ( 1 ) . There have been results which overcome this exponential jump; the best known algorithm can solve Dominating Set in time 2 O ( k 2 ) n O ( 1 ) by avoiding constructing a k-expression Bui-Xuan et al. (2013) [7] . We improve this to 2 O ( k log k ) n O ( 1 ) . Indeed, we show that for a graph of clique-width k, a large class of domination and partitioning problems (LC-VSP), including Dominating Set , can be solved in 2 O ( k log k ) n O ( 1 ) . Our main tool is a variant of rank-width using the rank of a 0–1 matrix over the rational field instead of the binary field.

[1]  Mamadou Moustapha Kanté,et al.  The Rank-Width of Edge-Coloured Graphs , 2007, Theory of Computing Systems.

[2]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[3]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[4]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[5]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[6]  Pim van 't Hof,et al.  Proper Interval Vertex Deletion , 2010, Algorithmica.

[7]  Martin Vatshelle,et al.  Graph classes with structured neighborhoods and algorithmic applications , 2011, Theor. Comput. Sci..

[8]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[9]  Frank Gurski,et al.  A comparison of two approaches for polynomial time algorithms computing basic graph parameters , 2008, ArXiv.

[10]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[11]  Bert Gerards,et al.  Obstructions to branch-decomposition of matroids , 2006, J. Comb. Theory, Ser. B.

[12]  Udi Rotics,et al.  On the Relationship Between Clique-Width and Treewidth , 2001, SIAM J. Comput..

[13]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[14]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[15]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[16]  Erik Jan van Leeuwen,et al.  Faster Algorithms on Branch and Clique Decompositions , 2010, MFCS.

[17]  Jan Arne Telle,et al.  Boolean-Width of Graphs , 2009, IWPEC.

[18]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[19]  Kellogg S. Booth,et al.  Dominating Sets in Chordal Graphs , 1982, SIAM J. Comput..

[20]  Jan Arne Telle,et al.  Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems , 2013, Theor. Comput. Sci..

[21]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[22]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[23]  M. Vatshelle New Width Parameters of Graphs , 2012 .

[24]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[25]  Yixin Cao,et al.  Interval Deletion Is Fixed-Parameter Tractable , 2012, SODA.

[26]  Jan Arne Telle,et al.  H-join decomposable graphs and algorithms with runtime single exponential in rankwidth , 2010, Discret. Appl. Math..

[27]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.

[28]  Paul D. Seymour,et al.  Testing branch-width , 2007, J. Comb. Theory, Ser. B.

[29]  Vít Jelínek The rank-width of the square grid , 2010, Discret. Appl. Math..

[30]  B. Mohar,et al.  Graph Minors , 2009 .

[31]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[32]  Sang-il Oum,et al.  Rank‐width is less than or equal to branch‐width , 2008, J. Graph Theory.

[33]  Saket Saurabh,et al.  Simpler Parameterized Algorithm for OCT , 2009, IWOCA.