The inclusion of exogenous variables in functional autoregressive ozone forecasting
暂无分享,去创建一个
[1] G. S. Watson,et al. Smooth regression analysis , 1964 .
[2] E. Nadaraya. On Estimating Regression , 1964 .
[3] Y. Slamani. Etude comparative de differents modeles mathematiques pour la prediction des niveaux de pollution atmospherique , 1988 .
[4] B. Ghattas,et al. Prévisions des pics d'ozone par arbres de régression, simples et agrégés par Bootstrap , 1999 .
[5] M. Gardner,et al. Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London , 1999 .
[6] J. Viel,et al. A model selection tool in multi-pollutant time series : The Granger-Causality diagnosis , 1999 .
[7] Marija Zlata Boznar,et al. A neural network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain , 1993 .
[8] Philippe C. Besse,et al. Approximation spline de la prvision d'un processus fonctionnel autorgressif d'ordre 1 , 1996 .
[9] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[10] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[11] D. Bosq. Linear Processes in Function Spaces: Theory And Applications , 2000 .
[12] Jorge Reyes,et al. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile , 2000 .
[13] Ross Ihaka,et al. Gentleman R: R: A language for data analysis and graphics , 1996 .
[14] Non-causalité et discrétisation fonctionnelle, théorèmes limites pour un processus ARHX(1) , 2000 .
[15] Andrew C. Comrie,et al. Climatology and forecast modeling of ambient carbon monoxide in Phoenix, Arizona , 1999 .
[16] T. Mourid. Contribution à la statistique des processus autorégressifs à temps continus , 1995 .
[17] M. Deistler,et al. Time series models for short term forecasting of ozone in the eastern part of Austria , 2001 .
[18] Kasım Koçak,et al. Nonlinear time series prediction of O3 concentration in Istanbul , 2000 .
[19] V. Prybutok,et al. A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. , 1996, Environmental pollution.
[20] Paul L. Speckman,et al. A model for predicting maximum and 8 h average ozone in Houston , 1999 .
[21] Jose Torres-Jimenez,et al. Short-term ozone forecasting by artificial neural networks , 1995 .
[22] Wenceslao González-Manteiga,et al. Time-series analysis for ambient concentrations , 1993 .
[23] Wenceslao González-Manteiga,et al. Prediction of SO2 pollution incidents near a power station using partially linear models and an historical matrix of predictor‐response vectors , 2000 .
[24] Colin O. Wu,et al. Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.
[25] P. Perez,et al. Statistical modelling and prediction of atmospheric pollution by particulate material : two nonparametric approaches , 2001 .
[26] B. Silverman,et al. Functional Data Analysis , 1997 .
[27] Philippe C. Besse,et al. Autoregressive Forecasting of Some Functional Climatic Variations , 2000 .
[28] Monique Graf-Jaccottet,et al. Predictive models for ground ozone and nitrogen dioxide time series , 1998 .
[29] Stephen Dorling,et al. Statistical surface ozone models: an improved methodology to account for non-linear behaviour , 2000 .