Attribute Based Anonymity for Preserving Privacy

Privacy Preserving Publication has become much concern in this decade. Data holders are simply publishing the dataset for mining and survey purpose with less knowledge towards privacy issues. Current research has focused on statistical and hippocratic databases to minimize the re-identification of data. Popular principles like k-anonymity, l-diversity etc., were proposed in literature to achieve privacy. There is a possibility that person specific information may be exposed when the adversary ponders on different combinations of the attributes. In this paper, we analyse this problem and propose a method to publish the finest anonymized dataset that preserves both privacy and utility.

[1]  Ashwin Machanavajjhala,et al.  l-Diversity: Privacy Beyond k-Anonymity , 2006, ICDE.

[2]  ASHWIN MACHANAVAJJHALA,et al.  L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[3]  Vijay S. Iyengar,et al.  Transforming data to satisfy privacy constraints , 2002, KDD.

[4]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[5]  Dorothy E. Denning,et al.  A Multilevel Relational Data Model , 1987, 1987 IEEE Symposium on Security and Privacy.

[6]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..