Structural, elastic, electronic, thermodynamic, and optical properties of layered BaPd2As2 pnictide superconductor: A first principles investigation

Abstract BaPd2As2, belonging to the 122 pnictide group, is an iron-free layered transition metal arsenide which exhibits superconductivity at low temperature when realized in the ThCr2Si2 type structure (I4/mmm). We have performed density functional theory (DFT) based calculations to investigate the structural, elastic, electronic, thermodynamic, and optical properties of BaPd2As2 in this study. The structural, elastic, and the band structure features are compared with the available experimental and theoretical results. Pressure and temperature dependences of various important thermodynamic functions, e.g., bulk modulus, specific heats at constant pressure and volume, coefficient of volume thermal expansion, and Debye temperature are studied in details for the first time. The optical parameters of BaPd2As2 are also studied in details for the first time. The optical properties compliment the electronic band structure characteristics. Optical constants show significant dependence of the state of polarization of the incident electric field. BaPd2As2 exhibits high reflectance in the infrared and near-visible region and strongly absorbs the ultraviolet radiation. The relevance of the electronic energy density of states and the characteristic phonon frequency to superconductivity in BaPd2As2 is also discussed.

[1]  Z. Ren,et al.  High-pressure effects on isotropic superconductivity in the iron-free layered pnictide superconductor BaPd 2 As 2 , 2018, 1805.07838.

[2]  W. Ding,et al.  Elastic and electronic properties of tI26-type Mg12RE (RE = Ce, Pr and Nd) phases , 2012 .

[3]  Jianyong Chen Phonons and Electron–Phonon Coupling of Newly Discovered ThCr2Si2-Type Superconductor BaPd2As2: A Comparison Study with Sr(Ca)Pd2As2 , 2016 .

[4]  K. Kudo,et al.  Strong-Coupling Superconductivity in BaPd2As2 Induced by Soft Phonons in the ThCr2Si2-Type Polymorph , 2017, 1705.08054.

[5]  Md. Mer Mosharraf Hossain,et al.  Effects of transition metals on physical properties of M2BC (M = V, Nb, Mo and Ta): A DFT calculation , 2018, Journal of Alloys and Compounds.

[6]  S. Naqib,et al.  Elastic, thermodynamic, electronic, and optical properties of recently discovered superconducting transition metal boride NbRuB: An ab-initio investigation , 2017 .

[7]  M. A. Ali,et al.  Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB , 2017 .

[8]  Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: A new ordered MAX phase , 2017, 1702.03048.

[9]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[10]  Richard L. Greene,et al.  High-temperature superconductivity in iron-based materials , 2010, 1006.4618.

[11]  R. Vovk,et al.  Elastic and thermodynamic properties of new (Zr3−xTix)AlC2 MAX-phase solid solutions , 2017 .

[12]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[13]  Structural, Elastic, and Electronic Properties of Recently Discovered Ternary Silicide Superconductor Li2IrSi3: An ab-initio Study , 2015, 1505.02557.

[14]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[15]  J. Schmalian,et al.  What drives nematic order in iron-based superconductors? , 2014, Nature Physics.

[16]  D. Johnston,et al.  Superconducting and normal-state properties ofAPd2As2(A = Ca, Sr, Ba) single crystals , 2013, 1304.7148.

[17]  Olle Eriksson,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 , 1998 .

[18]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[19]  First‐principles prediction of mechanical and bonding characteristics of new T2 superconductor Ta5GeB2 , 2016, 1607.06199.

[20]  G. Stewart,et al.  Superconducting properties of the s±-wave state: Fe-based superconductors , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  M. Eberhart,et al.  Cauchy pressure and the generalized bonding model for nonmagnetic bcc transition metals , 2012 .

[22]  R. Ahuja,et al.  Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides , 2005 .

[23]  Recently synthesized (Zr1-xTix)2AlC (0 ≤ x ≤ 1) solid solutions: Theoretical study of the effects of M mixing on physical properties , 2017, 1709.09505.

[24]  Elastic properties of MgCNi3 - a superconducting perovskite , 2007 .

[25]  Jan Almlöf,et al.  General methods for geometry and wave function optimization , 1992 .

[26]  A. Delin,et al.  Elastic properties of MgCNi3—a superconducting perovskite , 2007 .

[27]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[28]  M. A. Ali,et al.  Predicted MAX Phase Sc2InC: Dynamical Stability, Vibrational and Optical Properties , 2017, 1705.07552.

[29]  Hideo Hosono,et al.  Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05—0.12) with Tc = 26 K. , 2008 .

[30]  A. L. Ivanovskii,et al.  Elastic and Electronic Properties of Superconducting CaPd2As2 and SrPd2As2 vs. Non-superconducting BaPd2As2 , 2014 .

[31]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[32]  S. Naqib,et al.  Possible explanation of high-Tc in some 2D cuprate superconductors , 1997 .

[33]  An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc 2 AlC MAX compound , 2016, 1603.07530.

[34]  P. Hirschfeld,et al.  Gap symmetry and structure of Fe-based superconductors , 2011, 1106.3712.

[35]  Peter Hirschfeld,et al.  Iron-based superconductors, seven years later , 2015 .

[36]  Schubert,et al.  Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems. , 1996, Physical review. B, Condensed matter.

[37]  Physical properties of predicted Ti2CdN versus existing Ti2CdC MAX phase: An ab initio study , 2015, 1511.08632.

[38]  M. Aftabuzzaman,et al.  New MAX Phase Superconductor Ti 2GeC: A First-principles Study , 2013 .

[39]  Cairong Zhang,et al.  Theoretical investigations of the physical properties of tetragonal CaSiO3 perovskite , 2010 .

[40]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[41]  Lars Fast,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals : Application to TiSi 2 , 1998 .

[42]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[43]  Guizhen Wu,et al.  Superconductivity at 43 K in SmFeAsO1-xFx , 2008, Nature.

[44]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[45]  O. Anderson,et al.  Elastic constants of the central force model for cubic structures: Polycrystalline aggregates and instabilities , 1971 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.