Can the Dynamics of the Term Structure of Petroleum Futures be Forecasted? Evidence from Major Markets

We investigate whether the daily evolution of the term structure of petroleum futures can be forecasted. To this end, the principal components analysis is employed. The retained principal components describe the dynamics of the term structure of futures prices parsimoniously and are used to forecast the subsequent daily changes of futures prices. Data on the New York Mercantile Exchange (NYMEX) crude oil, heating oil, gasoline, and the International Petroleum Exchange (IPE) crude oil futures are used. We find that the retained principal components have small forecasting power both in-sample and out-of-sample. Similar results are obtained from standard univariate and vector autoregression models. Spillover effects between the four petroleum futures markets are also detected.

[1]  Perry Sadorsky,et al.  Time-varying risk premiums in petroleum futures prices , 2002 .

[2]  T. Ané,et al.  Implied volatility surfaces and market activity over time , 2001 .

[3]  B. Swart,et al.  Quantitative Finance , 2006, Metals and Energy Finance.

[4]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[5]  Diana Ramos Ribeiro,et al.  A Two-Factor Model for Commodity Prices and Futures Valuation , 2004 .

[6]  Eduardo S. Schwartz,et al.  Short-Term Variations and Long-Term Dynamics in Commodity Prices , 2000 .

[7]  R. Litzenberger,et al.  Backwardation in Oil Futures Markets: Theory and Empirical Evidence , 1995 .

[8]  Massimiliano Marcellino,et al.  Factor Forecasts for the UK , 2005 .

[9]  Wolfgang K. Härdle,et al.  The Dynamics of Implied Volatilities: A Common Principal Components Approach , 2003 .

[10]  Eduardo S. Schwartz,et al.  Stochastic Convenience Yield and the Pricing of Oil Contingent Claims , 1990 .

[11]  L. Clewlow,et al.  A Multi-Factor Model for Energy Derivatives , 1999 .

[12]  E. Fama,et al.  Dividend yields and expected stock returns , 1988 .

[13]  D. Lautier A Matter of Principal , 2005 .

[14]  Kanwalroop Kathy Dhanda,et al.  Chaos in oil prices? Evidence from futures markets , 2001 .

[15]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[16]  Eduardo S. Schwartz The stochastic behavior of commodity prices: Implications for valuation and hedging , 1997 .

[17]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[18]  Carol Alexander Principles of the skew , 2003 .

[19]  Robert B. Litterman,et al.  Explorations into Factors Explaining Money Market Returns , 1994 .

[20]  Carol Alexander,et al.  Market Models: A Guide to Financial Data Analysis , 2001 .

[21]  Eduardo S. Schwartz,et al.  The Valuation of Commodity Contingent Claims , 1994 .

[22]  J. E. Jackson,et al.  Statistical Factor Analysis and Related Methods: Theory and Applications , 1995 .

[23]  Les Clewlow,et al.  Valuing Energy Options in a One Factor Model Fitted to Forward Prices , 1999 .

[24]  Les Clewlow,et al.  The Dynamics of the S&P 500 Implied Volatility Surface , 2000 .

[25]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[26]  Jeff Fleming,et al.  The impact of energy derivatives on the crude oil market , 1999 .

[27]  I. Jolliffe A Note on the Use of Principal Components in Regression , 1982 .

[28]  Nikolaos Panigirtzoglou,et al.  A new approach to modeling the dynamics of implied distributions: Theory and evidence from the S&P 500 options , 2004 .

[29]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[30]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[31]  Goldman Sachs Quantitative Strategies Research Notes , 1996 .

[32]  H. Geman Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy , 2005 .

[33]  A. Basilevsky Statistical Factor Analysis and Related Methods: Theory and Applications , 1994 .

[34]  B R Greene,et al.  String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Robert B. Litterman,et al.  Common Factors Affecting Bond Returns , 1991 .

[36]  Alexander Basilevsky,et al.  Statistical Factor Analysis and Related Methods , 1994 .

[37]  George S. Skiadopoulos,et al.  VAR: History or Simulation? , 2003 .

[38]  Alexander Basilevsky Wiley Series in Probability and Mathematical Statistics , 2008 .

[39]  Albert S. Paulson,et al.  Risk arbitrage opportunities in petroleum futures spreads , 1999 .

[40]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[41]  A contango‐constrained model for storable commodity prices , 2005 .

[42]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[43]  Carlos F. Tolmasky,et al.  Principal components analysis for correlated curves and seasonal commodities: The case of the petroleum market , 2002 .

[44]  Eduardo S. Schwartz,et al.  Pricing of Options on Commodity Futures with Stochastic Term Structures of Convenience Yields and Interest Rates , 1998, Journal of Financial and Quantitative Analysis.

[45]  M. Tamvakis,et al.  Spillover effects in energy futures markets , 2001 .

[46]  J. Poterba,et al.  Mean Reversion in Stock Prices: Evidence and Implications , 1987 .

[47]  S. Moshiri,et al.  Forecasting Nonlinear Crude Oil Futures Prices , 2006 .