AN ELECTRICALLY CONTROLLED BRAGG REFLECTOR INTEGRATED IN A RIB SILICON ON INSULATOR WAVEGUIDE

In this letter, we present a novel structure for light amplitude modulation based on a lateral p-i-n diode combined with a Bragg reflector which transforms the phase shift induced by the plasma dispersion effect in the intrinsic region of the diode into a voltage controlled variation of the reflectivity of the Bragg mirror. Numerical simulations show a modulation depth of 50% achieved in about 12 ns with a power dissipation of 4.0 mW and an insertion loss of 1.0 dB. The device is demonstrated to be very attractive in terms of power dissipation as compared to a Mach–Zehnder interferometer occupying the same area on chip.