Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments.

A novel sulfate-reducing bacterium was isolated from pristine sediments of Lake Stechlin, Germany. This strain, STP12(T), was found to contain predominantly c-type cytochromes and to reduce sulfate, sulfite and thiosulfate using lactate as an electron donor. Although STP12(T) could not utilize elemental sulfur as an electron acceptor, it could support growth by dissimilatory Fe(III) reduction. In a comparison of 16S rRNA gene sequences, STP12(T) was 96.7 % similar to Desulfosporosinus auripigmenti DSM 13351(T), 96.5 % similar to Desulfosporosinus meridiei DSM 13257(T) and 96.4 % similar to Desulfosporosinus orientis DSM 765(T). DNA-DNA hybridization experiments revealed that strain STP12(T) shows only 32 % reassociation with the type strain of the type species of the genus, D. orientis DSM 765(T). These data, considered in conjunction with strain-specific differences in heavy metal tolerance, cell-wall chemotaxonomy and riboprint patterns, support recognition of strain STP12(T) (=DSM 15449(T)=JCM 12239(T)) as the type strain of a distinct and novel species within the genus Desulfosporosinus, Desulfosporosinus lacus sp. nov.

[1]  D. Ryder,et al.  Riboprinting and 16S rRNA Gene Sequencing for Identification of Brewery Pediococcus Isolates , 2001, Applied and Environmental Microbiology.

[2]  H. Cypionka,et al.  Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture , 2004, Archives of Microbiology.

[3]  James G. Cappuccino,et al.  Microbiology Laboratory Manual , 1991 .

[4]  J. Rose,et al.  Geographical Variation in Ribotype Profiles of Escherichia coli Isolates from Humans, Swine, Poultry, Beef, and Dairy Cattle in Florida , 2003, Applied and Environmental Microbiology.

[5]  J. Banfield,et al.  Radionuclide contamination: Nanometre-size products of uranium bioreduction , 2002, Nature.

[6]  K. Schleifer,et al.  Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. , 1983, Systematic and applied microbiology.

[7]  F. Morel,et al.  Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. , 1997, Archives of Microbiology.

[8]  F. Widdel,et al.  A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans , 1977, Archives of Microbiology.

[9]  D. Lovley,et al.  Microorganisms Associated with Uranium Bioremediation in a High-Salinity Subsurface Sediment , 2003, Applied and Environmental Microbiology.

[10]  E. Stackebrandt,et al.  Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov. , 2003, International journal of systematic and evolutionary microbiology.

[11]  S. Spring,et al.  Isolation and Characterization of a Novel As(V)-Reducing Bacterium: Implications for Arsenic Mobilization and the Genus Desulfitobacterium , 2001, Applied and Environmental Microbiology.

[12]  Derek R. Lovley,et al.  Reduction of Fe(III) in sediments by sulphate-reducing bacteria , 1993, Nature.

[13]  J. Banfield,et al.  Microbial Populations Stimulated for Hexavalent Uranium Reduction in Uranium Mine Sediment , 2003, Applied and Environmental Microbiology.

[14]  J. Bruce Automated system rapidly identifies and characterizes microorganisms in food , 1996 .

[15]  M. Pilson,et al.  Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters , 1972 .

[16]  E. Work,et al.  The Behavior of the Isomers of α,ε-Diaminopimelic Acid on Paper Chromatograms , 1955 .

[17]  F. Widdel,et al.  Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species , 1985, Archives of Microbiology.

[18]  J. Allison,et al.  MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual , 1991 .

[19]  R. Conrad,et al.  Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. , 2004, FEMS microbiology ecology.

[20]  F. Rainey,et al.  Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. , 1996, International journal of systematic bacteriology.

[21]  K.-D. Jahnke,et al.  BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer , 1992 .

[22]  Marguerita Sasser,et al.  Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Technical Note # 101 , 2001 .

[23]  S. Peiffer,et al.  Effect of pH on the anaerobic microbial cycling of sulfur in mining-impacted freshwater lake sediments , 2001 .

[24]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[25]  J. Postgate,et al.  Classification of the spore-forming sulfate-reducing bacteria. , 1965, Bacteriological reviews.

[26]  L. Miller Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids , 1982, Journal of clinical microbiology.

[27]  J. Ley,et al.  The quantitative measurement of DNA hybridization from renaturation rates. , 1970, European journal of biochemistry.

[28]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[29]  D. Lovley,et al.  Potential for In Situ Bioremediation of a Low-pH, High-Nitrate Uranium-Contaminated Groundwater , 2003 .

[30]  Vom Fachbereich Survival of sulfate-reducing bacteria in oxic oligotrophic environments related to drinking water , 2000 .

[31]  Joel D. Cline,et al.  SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL WATERS1 , 1969 .

[32]  P. Franzmann,et al.  Spore‐forming, Desulfosporosinus‐like sulphate‐reducing bacteria from a shallow aquifer contaminated with gasolene , 2000, Journal of applied microbiology.

[33]  John J. Bozzola,et al.  Electron microscopy : principles and techniques for biologists , 1992 .

[34]  J. Kuever,et al.  FISH Shows That Desulfotomaculum spp. Are the Dominating Sulfate-Reducing Bacteria in a Pristine Aquifer , 2004, Microbial Ecology.

[35]  R. M. Kroppenstedt Fatty acid and menaquinone analysis of actinomycetes and related organisms , 1985 .

[36]  E. Stackebrandt,et al.  The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. , 1996, International journal of systematic bacteriology.

[37]  R. Edlich,et al.  A more reliable gram staining technic for diagnosis of surgical infections. , 1975, American journal of surgery.

[38]  P. Franzmann,et al.  The role of microbial populations in the containment of aromatichydrocarbons in the subsurface , 2004, Biodegradation.

[39]  J. Postgate A Diagnostic Reaction of Desulphovibrio desulphuricans , 1959, Nature.

[40]  W. Whitman,et al.  Precise Measurement of the G+C Content of Deoxyribonucleic Acid by High-Performance Liquid Chromatography , 1989 .

[41]  R. Kroppenstedt,et al.  Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa , 1996 .

[42]  P. Cashion,et al.  A rapid method for the base ratio determination of bacterial DNA. , 1977, Analytical biochemistry.

[43]  L. Young,et al.  A novel arsenate respiring isolate that can utilize aromatic substrates. , 2004, FEMS microbiology ecology.

[44]  P. Franzmann,et al.  Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. , 2001, International journal of systematic and evolutionary microbiology.

[45]  E. Stackebrandt,et al.  Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. , 1997, International journal of systematic bacteriology.

[46]  J. Banfield,et al.  Enzymatic U(VI) reduction by Desulfosporosinus species , 2004 .