Surface emitting ring quantum cascade lasers for chemical sensing

Abstract. We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer–Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

[1]  Manijeh Razeghi,et al.  High power, continuous wave, quantum cascade ring laser , 2011 .

[2]  Ying Zhang,et al.  Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers , 2013 .

[3]  Werner Schrenk,et al.  Mid-infrared surface transmitting and detecting quantum cascade device for gas-sensing , 2016, Scientific Reports.

[4]  Mattias Beck,et al.  Surface-emitting 10.1 mum quantum-cascade distributed feedback lasers , 1999 .

[5]  Manijeh Razeghi,et al.  High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation , 2017 .

[6]  David Chapman,et al.  Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy , 2007 .

[7]  Werner Schrenk,et al.  A bi-functional quantum cascade device for same-frequency lasing and detection , 2012 .

[8]  Werner Schrenk,et al.  Advanced gas sensors based on substrate-integrated hollow waveguides and dual-color ring quantum cascade lasers. , 2016, The Analyst.

[9]  Mattias Beck,et al.  Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power. , 2013, Optics express.

[10]  Pablo Acedo,et al.  A quantitative comparison of dispersion- and absorption-spectroscopic gas sensing , 2017, OPTO.

[11]  Gottfried Strasser,et al.  Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H2S in a CH4 matrix for process analytics. , 2016, Optics express.

[12]  M. Schubert,et al.  Analysis of terahertz surface emitting quantum-cascade lasers , 2006, IEEE Journal of Quantum Electronics.

[13]  A. Tredicucci,et al.  Hyperuniform disordered terahertz quantum cascade laser , 2016, Scientific Reports.

[14]  Frank K. Tittel,et al.  Chemical sensors based on quantum cascade lasers , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[15]  Swetha Kamlapurkar,et al.  Silicon photonic on-chip trace-gas spectroscopy of methane , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[16]  Frank K. Tittel,et al.  Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications , 2005 .

[17]  Gerard Wysocki,et al.  High frequency modulation capabilities and quasi single-sideband emission from a quantum cascade laser. , 2014, Optics express.

[18]  S. Borri,et al.  Frequency modulation spectroscopy by means of quantum-cascade lasers , 2006 .

[19]  A. Davies,et al.  Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures , 2012, Nature Communications.

[20]  Werner Schrenk,et al.  Low divergence single-mode surface emitting quantum cascade ring lasers , 2008 .

[21]  Gerard Wysocki,et al.  Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser , 2013 .

[22]  Bernhard Lendl,et al.  Toward Stand-Off Open-Path Measurements of NO and NO2 in the Sub-Parts Per Million Meter Range Using Quantum Cascade Lasers (QCLs) in the Intra-Pulse Absorption Mode , 2013, Applied spectroscopy.

[23]  Jörgen Gustafsson,et al.  Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals , 2001 .

[24]  Edmund H. Linfield,et al.  Photonic quasi-crystal terahertz lasers , 2014, Nature Communications.

[25]  Federico Capasso,et al.  Quantum Cascade Surface-Emitting Photonic Crystal Laser , 2003, Science.

[26]  Werner Schrenk,et al.  Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures , 2014, Nature Communications.

[27]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[28]  Yu-Chi Chang,et al.  Mid-infrared spectroscopy for gases and liquids based on quantum cascade technologies. , 2014, The Analyst.

[29]  Fow-Sen Choa,et al.  Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth , 2006, IEEE Photonics Technology Letters.

[30]  K. Kohler,et al.  Quantum Cascade Detectors , 2009, IEEE Journal of Quantum Electronics.

[31]  Gottfried Strasser,et al.  Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy. , 2014, Optics express.

[32]  Pedro Martín-Mateos,et al.  Heterodyne Phase-Sensitive Dispersion Spectroscopy in the Mid-Infrared with a Quantum Cascade Laser. , 2017, Analytical chemistry.

[33]  Werner Schrenk,et al.  The influence of whispering gallery modes on the far field of ring lasers , 2015, Scientific reports.

[34]  Mattias Beck,et al.  Rf-modulation of mid-infrared distributed feedback quantum cascade lasers. , 2016, Optics express.

[35]  Mattias Beck,et al.  Quantum-cascade-laser structures as photodetectors , 2002 .

[36]  Werner Schrenk,et al.  Remote Sensing with Commutable Monolithic Laser and Detector , 2016, ACS photonics.

[37]  Pedro Martín-Mateos,et al.  Heterodyne phase-sensitive detection for calibration-free molecular dispersion spectroscopy. , 2014, Optics express.

[38]  Gottfried Strasser,et al.  Random Lasers for Broadband Directional Emission , 2016 .