Microsatellite Based Paternity Analysis in a Clonal Eucalyptus nitens Seed Orchard

Microsatellite markers were used to determine paternity in 473 open-pollinated progenies from a clonal Eucalyptus nitens seed orchard of 50 trees from 12 different genotypes. The outcrossing rate in this orchard was high, averaging 0.85 (weighted by capsule crop) but variable between trees (ranging from 0.6‐1.0). Paternal contribution of each genotype to the open-pollinated seed crop was predicted by the size of the flower crop of each genotype (r = 0.76), but not the number of ramets. While the detectable contamination in this orchard is relatively low (4.5%), it is atypical when compared to other published estimates in eucalypt seed orchards suggesting that with suitable buffering low levels of contamination can be achieved.

[1]  R. Vaillancourt,et al.  A microsatellite study on outcrossing rates and contamination in an Eucalyptus globulus breeding arboretum , 2008, Journal of Forestry Research.

[2]  B. Potts,et al.  Achievements in forest tree improvement in Australia and New Zealand 9. Genetic improvement of Eucalyptus nitens in Australia , 2008 .

[3]  C. Yates,et al.  Maintenance of high pollen dispersal in Eucalyptus wandoo, a dominant tree of the fragmented agricultural region in Western Australia , 2008, Conservation Genetics.

[4]  R. Henry,et al.  Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers , 2007, Tree Genetics & Genomes.

[5]  L. Gea,et al.  PARENTAL RECONSTRUCTION FOR BREEDING, DEPLOYMENT, AND SEED-ORCHARD MANAGEMENT OF EUCALYPTUS NITENS , 2007 .

[6]  G. Howe,et al.  Estimating pollen flow using SSR markers and paternity exclusion: accounting for mistyping , 2005, Molecular ecology.

[7]  R. Vaillancourt,et al.  Pollen dispersal from exotic eucalypt plantations , 2005, Conservation Genetics.

[8]  R. Vaillancourt,et al.  Advances in pollination techniques for large-scale seed production in Eucalyptus globulus , 2004 .

[9]  R. Vaillancourt,et al.  Stability of Outcrossing Rates in Eucalyptus globulus Seedlots , 2004 .

[10]  B. Potts,et al.  Pollinators in seed orchards of Eucalyptus nitens (Myrtaceae) , 2004 .

[11]  R. Vaillancourt,et al.  Gene flow between introduced and native Eucalyptus species , 2002, New Forests.

[12]  M. Keil,et al.  Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus , 1994, Theoretical and Applied Genetics.

[13]  B. Potts Genetic improvement of eucalypts , 2004 .

[14]  S. Gerber,et al.  Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis , 2003, Theoretical and Applied Genetics.

[15]  B. Potts,et al.  Pollen tube growth and early ovule development following self- and cross-pollination in Eucalyptus nitens , 2003, Sexual Plant Reproduction.

[16]  R. Vaillancourt,et al.  Genetic pollution of native eucalypt gene pools—identifying the risks , 2003 .

[17]  Rebecca C. Jones,et al.  Microsatellite and morphological analysis of Eucalyptus globulus populations , 2002 .

[18]  Brad M. Potts,et al.  Development and Characterisation of Microsatellite Loci in Eucalyptus globulus (Myrtaceae) , 2001 .

[19]  P. McVetty,et al.  Effectiveness of border areas in confining the spread of transgenic Brassica napus pollen , 2000 .

[20]  A. Griffin,et al.  Mass controlled pollination of Eucalyptus globulus: a practical reality , 1999 .

[21]  Williams,et al.  Testing single visit pollination procedures for Eucalyptus globulus and E. nitens , 1999 .

[22]  R. Tarchini,et al.  Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla , 1998, Theoretical and Applied Genetics.

[23]  A. Alfenas,et al.  The use of self-incompatibility in the production of hybrid eucalyptus seed by `Aracruz Celulose' in Brazil , 1998 .

[24]  A. Alfenas,et al.  Interspecific hybridization and inbreeding effect in seed from a Eucalyptus grandis x E. urophylla clonal orchard in Brazil , 1998 .

[25]  T. C. Marshall,et al.  Statistical confidence for likelihood‐based paternity inference in natural populations , 1998, Molecular ecology.

[26]  C. Hardner,et al.  Inbreeding depression for growth, wood and fecundity traits in Eucalyptus Nitens , 1998 .

[27]  R. Vaillancourt,et al.  Fingerprinting for quality control in breeding and deployment. , 1998 .

[28]  W. Tibbits,et al.  Distribution, biology, genetics, and improvement programs for Eucalyptus globulus and E. nitens around the world. , 1997 .

[29]  B. Potts,et al.  Eucalypt genetics and genecology , 1997 .

[30]  M. Moncur,et al.  The role of honey bees (Apis mellifera) in eucalypt and acacia seed production areas , 1995 .

[31]  J. Davidson,et al.  Eucalypt Domestication and Breeding , 1994 .

[32]  J. Doyle,et al.  Isolation of plant DNA from fresh tissue , 1990 .

[33]  W. Tibbits Controlled Pollination Studies with Shining Gum ( Eucalyptus nitens (Deane & Maiden) Maiden) , 1989 .

[34]  M. Sedgley,et al.  Sexual reproduction of tree crops. , 1989 .

[35]  A. Griffin,et al.  Patterns of natural and manipulated hybridisation in the genus Eucalyptus L'Hérit. - a review. , 1988 .

[36]  M. Brooker,et al.  Field guide to eucalypts. Volume 1. South-eastern Australia. , 1983 .