Scenario-based discrimination of common grapevine varieties using in-field hyperspectral data in the western of Iran

[1]  F. Witlox,et al.  Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover , 2020 .

[2]  F Morsdorf,et al.  Remote sensing of plant-water relations: An overview and future perspectives. , 2018, Journal of plant physiology.

[3]  Gustau Camps-Valls,et al.  Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods , 2018, Surveys in Geophysics.

[4]  Carlos Antonio da Silva Junior,et al.  Soybean varieties discrimination using non-imaging hyperspectral sensor , 2018 .

[5]  Jay Gao,et al.  Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges , 2018 .

[6]  Howard E. Epstein,et al.  Identifying invasive plant species using field spectroscopy in the VNIR region in successional systems of north-central Virginia , 2017 .

[7]  R. N. M. J. Páscoa,et al.  Exploratory study on vineyards soil mapping by visible/near-infrared spectroscopy of grapevine leaves , 2016, Comput. Electron. Agric..

[8]  Y. Shimabukuro,et al.  Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data , 2016 .

[9]  André Große-Stoltenberg,et al.  Evaluation of Continuous VNIR-SWIR Spectra versus Narrowband Hyperspectral Indices to Discriminate the Invasive Acacia longifolia within a Mediterranean Dune Ecosystem , 2016, Remote. Sens..

[10]  R. Valentini,et al.  Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data , 2016 .

[11]  María-Paz Diago,et al.  Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions , 2016, Sensors.

[12]  Juan Fernández-Novales,et al.  Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer , 2015, PloS one.

[13]  Ricardo Díaz-Delgado,et al.  Towards a Standard Plant Species Spectral Library Protocol for Vegetation Mapping: A Case Study in the Shrubland of Doñana National Park , 2015, ISPRS Int. J. Geo Inf..

[14]  Fang Cheng,et al.  Spectral and Image Integrated Analysis of Hyperspectral Data for Waxy Corn Seed Variety Classification , 2015, Sensors.

[15]  Santonu Goswami,et al.  Development of a web-based vegetation spectral library (VSL) for remote sensing research and applications , 2015, PeerJ Prepr..

[16]  A. Gitelson,et al.  Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices. , 2015, Journal of plant physiology.

[17]  André Große-Stoltenberg,et al.  Field Spectroscopy in the VNIR-SWIR Region to Discriminate between Mediterranean Native Plants and Exotic-Invasive Shrubs Based on Leaf Tannin Content , 2015, Remote. Sens..

[18]  Kurt Prospere,et al.  Plant Species Discrimination in a Tropical Wetland Using In Situ Hyperspectral Data , 2014, Remote. Sens..

[19]  Laurie A. Chisholm,et al.  Classification of Australian Native Forest Species Using Hyperspectral Remote Sensing and Machine-Learning Classification Algorithms , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  Mohsen Mirzayi,et al.  Analysis of the physical and chemical quality of Mazandaran province (Iran) rivers using multivariate statistical methods , 2014 .

[21]  Pedro Melo-Pinto,et al.  Identification of grapevine varieties using leaf spectroscopy and partial least squares , 2013 .

[22]  Onisimo Mutanga,et al.  Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa , 2013 .

[23]  Yong He,et al.  Application of Hyperspectral Imaging and Chemometric Calibrations for Variety Discrimination of Maize Seeds , 2012, Sensors.

[24]  M. Schaepman,et al.  SPECTRAL REFLECTANCE DIFFERENCES OF ALNUS SUBCORDATA, QUERCUS CASTANEIFOLIA AND PARROTIA PERSICA LEAVES BASED ON NITROGEN CONTENT USING PLS REGRESSION , 2012 .

[25]  George P. Petropoulos,et al.  Discrimination of common Mediterranean plant species using field spectroradiometry , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[26]  M. Schaepman,et al.  Evaluation of spectral reflectance of seven Iranian rice varieties canopies , 2011 .

[27]  Meiling Liu,et al.  Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[28]  A. Calcante,et al.  Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture , 2010, Precision Agriculture.

[29]  Di Wu,et al.  Soluble solids content and pH prediction and varieties discrimination of grapes based on visible-near infrared spectroscopy , 2010 .

[30]  Michael E. Schaepman,et al.  Estimating canopy water content using hyperspectral remote sensing data , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[31]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[32]  O. Mutanga,et al.  Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry , 2009 .

[33]  D. Roberts,et al.  View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data , 2009 .

[34]  Y. Ying,et al.  On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy , 2009, Journal of Zhejiang University SCIENCE B.

[35]  Yong He,et al.  Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks , 2008 .

[36]  D. Lamb,et al.  Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves , 2008, Precision Agriculture.

[37]  Terry Caelli,et al.  Hyperspectral discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy levels , 2007 .

[38]  A. Skidmore,et al.  Red edge shift and biochemical content in grass canopies , 2007 .

[39]  Yong He,et al.  Discrimination of varieties of tea using near infrared spectroscopy by principal component analysis and BP model , 2007 .

[40]  Jan de Leeuw,et al.  Discriminating species using hyperspectral indices at leaf and canopy scales. The International Arch , 2007 .

[41]  Jean-Pierre Da Costa,et al.  Hyperspectral Image Analysis for Precision Viticulture , 2006, ICIAR.

[42]  A. Skidmore,et al.  Tropical mangrove species discrimination using hyperspectral data: A laboratory study , 2005 .

[43]  T. Lumley,et al.  PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS , 2004, Statistical Methods for Biomedical Research.

[44]  M. V. Til,et al.  SEASONAL VARIABILITY IN SPECTRAL REFLECTANCE OF COASTAL DUNE VEGETATION , 2004 .

[45]  S. Ustin,et al.  Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing , 2003 .

[46]  A. Skidmore,et al.  Spectral discrimination of vegetation types in a coastal wetland , 2003 .

[47]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[48]  F. M. Lacar,et al.  Use of hyperspectral reflectance for discrimination between grape varieties , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[49]  E. Hunt,et al.  Estimating near-infrared leaf reflectance from leaf structural characteristics. , 2001, American journal of botany.

[50]  M. Cervera,et al.  Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources. A case study with accessions from Rioja (Spain) , 1998, Theoretical and Applied Genetics.

[51]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[52]  E. K. Kemsley,et al.  Application of chemometrics to the 1H NMR spectra of apple juices: discrimination between apple varieties , 1998 .

[53]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[54]  Christopher B. Field,et al.  Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance , 1993 .

[55]  Thomas C. Vogelmann,et al.  Plant Tissue Optics , 1993 .

[56]  Jiyou Wu,et al.  Senescence and spectral reflectance in leaves of northern pin oak (Quercus palustris Muenchh.) , 1988 .

[57]  P. Galet A practical ampelography , 1979 .