Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown

Abstract This paper proposes two methods for estimating panel data models with group specific parameters when group membership is not known. The first method uses the individual level time series estimates of the parameters to form threshold variables. The problem of parameter heterogeneity is turned into estimation of a panel threshold model with an unknown threshold value. The second method modifies the K-means algorithm to perform conditional clustering. Units are clustered based on the deviations between the individual and the group conditional means. The two approaches are used to analyze growth across countries and housing market dynamics across the states in the U.S.

[1]  Steven N. Durlauf,et al.  Multiple regimes and cross‐country growth behaviour , 1995 .

[2]  Hongyi Li,et al.  Estimation of Short-Run and Long-Run Elasticities of Energy Demand From Panel Data Using Shrinkage Estimators , 1997 .

[3]  Andros Kourtellos,et al.  Empirics of Growth and Development , 2005 .

[4]  C. Carroll,et al.  The Nature of Precautionary Wealth , 1995 .

[5]  D. Weil,et al.  A Contribution to the Empirics of Economic Growth Author ( s ) : , 2008 .

[6]  Donald Robertson,et al.  Some strange properties of panel data estimators , 1992 .

[7]  Miguel A. Juárez,et al.  Model-based Clustering of non-Gaussian Panel Data , 2006 .

[8]  M. Browning,et al.  Modelling income processes with lots of heterogeneity , 2010 .

[9]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[10]  T. C. Edens,et al.  Economic Growth , 1957, The Journal of Economic History.

[11]  C. Burnside,et al.  Production function regressions, returns to scale, and externalities , 1996 .

[12]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[13]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[14]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[15]  Pai-Ling Li,et al.  Functional Clustering of Longitudinal Data , 2008 .

[16]  Dag Tjøstheim,et al.  An autoregressive model with suddenly changing parameters and an application to stock market prices , 1988 .

[17]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[18]  R. Russell,et al.  Human Capital and Convergence: A Production-Frontier Approach , 2005 .

[19]  Yixiao Sun Estimation and Inference in Panel Structure Models , 2005 .

[20]  Emily C Lawrance Poverty and the Rate of Time Preference: Evidence from Panel Data , 1991, Journal of Political Economy.

[21]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[22]  Miles S. Kimball,et al.  Preference Parameters and Behavioral Heterogeneity: An Experimental Approach in the Health and Retirement Survey , 1995 .

[23]  Jinyong Hahn,et al.  Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects When Both N and T are Large , 2000 .

[24]  Badi H. Baltagi,et al.  To Pool or Not to Pool: Homogeneous Versus Heterogeneous Estimators Applied to Cigarette Demand , 2000, Review of Economics and Statistics.

[25]  Cheng Hsiao,et al.  Formulation and estimation of dynamic models using panel data , 1982 .

[26]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[27]  Catherine A. Sugar,et al.  Finding the Number of Clusters in a Dataset , 2003 .

[28]  D. Pollard A Central Limit Theorem for $k$-Means Clustering , 1982 .

[29]  M. Pesaran Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure , 2004, SSRN Electronic Journal.

[30]  Cheng Hsiao,et al.  A Panel Analysis of Liquidity Constraints and Firm Investment , 1997 .

[31]  Kitack Lee,et al.  Growth and Convergence in a Multicountry Empirical Stochastic Solow Model , 1997 .

[32]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[33]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[34]  Badi H. Baltagi,et al.  Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline , 1997 .

[35]  Bruce E. Hansen,et al.  INSTRUMENTAL VARIABLE ESTIMATION OF A THRESHOLD MODEL , 2004, Econometric Theory.

[36]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[37]  C. Abraham,et al.  Unsupervised Curve Clustering using B‐Splines , 2003 .

[38]  Takashi Yamagata,et al.  Testing Slope Homogeneity in Large Panels , 2005, SSRN Electronic Journal.

[39]  Jeng-Min Chiou,et al.  Functional clustering and identifying substructures of longitudinal data , 2007 .

[40]  D. Pollard Strong Consistency of $K$-Means Clustering , 1981 .

[41]  Fatih Guvenen,et al.  An Empirical Investigation of Labor Income Processes , 2007 .

[42]  M. Pesaran,et al.  Random Coefficient Panel Data Models , 2004, SSRN Electronic Journal.

[43]  A. Gordaliza,et al.  Robustness Properties of k Means and Trimmed k Means , 1999 .

[44]  J. Bai,et al.  Estimation of a Change Point in Multiple Regression Models , 1997, Review of Economics and Statistics.

[45]  Richard E. Quandt,et al.  The Estimation of Structural Shifts by Switching Regressions , 1973 .

[46]  M. Arellano,et al.  The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators , 2003 .

[47]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[48]  L. Qin,et al.  The Clustering of Regression Models Method with Applications in Gene Expression Data , 2006, Biometrics.

[49]  Bruce E. Hansen,et al.  Threshold effects in non-dynamic panels: Estimation, testing, and inference , 1999 .

[50]  Mark W. Watson,et al.  The Evolution of National and Regional Factors in U.S. Housing Construction , 2008 .

[51]  P. Swamy Efficient Inference in a Random Coefficient Regression Model , 1970 .