The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing

Abstract. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE) mission in the next decade.

[1]  C. Cox Slopes of the sea surface deduced from photographs of sun glitter , 1956 .

[2]  J. Hansen Multiple Scattering of Polarized Light in Planetary Atmospheres Part II. Sunlight Reflected by Terrestrial Water Clouds , 1971 .

[3]  Multiple scattered radiation emerging from Rayleigh and continental haze layers. 2: Ellipticity and direction of polarization. , 1976, Applied optics.

[4]  Circular polarization of sunlight reflected by planetary atmospheres , 1977 .

[5]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[6]  Maurice Herman,et al.  Analysis of the POLDER polarization measurements performed over cloud covers , 1994, IEEE Trans. Geosci. Remote. Sens..

[7]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[8]  Bernard Pinty,et al.  Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[10]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[11]  David J. Diner,et al.  The Airborne Multi-angle Imaging SpectroRadiometer (AirMISR): instrument description and first results , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  François-Marie Bréon,et al.  Cloud droplet effective radius from spaceborne polarization measurements , 1998 .

[13]  C. J. I twcgge,et al.  MISR radiometric uncertainty analyses and their utilization within geophysical retrievals , 1999 .

[14]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[15]  M. Mishchenko,et al.  Retrieval of aerosol properties over the ocean using multispectral and multiangle Photopolarimetric measurements from the Research Scanning Polarimeter , 2001 .

[16]  M. Mishchenko,et al.  Reply to Comment on “Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the research scanning polarimeter” , 2001 .

[17]  Georectification of the airborne multi-angle imaging spectroradiometer , 2001 .

[18]  Jia Zong,et al.  MISR in-flight camera geometric model calibration and georectification performance , 2002, IEEE Trans. Geosci. Remote. Sens..

[19]  Brian Cairns,et al.  Case Studies of Aerosol Retrievals over the Ocean from Multiangle, Multispectral Photopolarimetric Remote Sensing Data , 2002 .

[20]  S. R. Meier,et al.  Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces , 2002 .

[21]  Jan-Peter Muller,et al.  Operational retrieval of cloud-top heights using MISR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[22]  Jay R. Herman,et al.  Aerosol properties from EP-TOMS near UV observations , 2002 .

[23]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[24]  Michael Eisinger,et al.  Refinement of a Database of Spectral Surface Reflectivity in the Range 335-772 nm Derived from 5.5 Years of GOME Observations , 2003 .

[25]  Joseph D. LaVeigne,et al.  Research scanning polarimeter and airborne usage for remote sensing of aerosols , 2003, SPIE Optics + Photonics.

[26]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[27]  Marie Doutriaux-Boucher,et al.  A comparison of cloud droplet radii measured from space , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Brian Cairns,et al.  Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters. , 2006, Applied optics.

[29]  F. Bréon,et al.  Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions , 2006 .

[30]  D. Randall,et al.  Climate models and their evaluation , 2007 .

[31]  Brian Cairns,et al.  Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing. , 2007, Applied optics.

[32]  M. Lebsock,et al.  Information content of near‐infrared spaceborne multiangular polarization measurements for aerosol retrievals , 2007 .

[33]  M. Daimon,et al.  Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. , 2007, Applied optics.

[34]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[35]  R. Wood,et al.  Cancellation of Aerosol Indirect Effects in Marine Stratocumulus through Cloud Thinning , 2007 .

[36]  Michael J. Garay,et al.  Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations , 2008 .

[37]  Anna-Britt Mahler,et al.  Minimizing instrumental polarization in the Multiangle SpectroPolarmetric Imager (MSPI) using diattenuation balancing between the three mirror coatings , 2008, Astronomical Telescopes + Instrumentation.

[38]  Peter R. J. North,et al.  The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light , 2009 .

[39]  N. Loeb,et al.  Reply to Comments on “Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast” , 2010 .

[40]  Beat Schmid,et al.  Polarimetric remote sensing of aerosols over land , 2009 .

[41]  Steven A. Ackerman,et al.  Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat , 2009 .

[42]  Guangyu Zhao,et al.  Satellite-Observed Location of Stratocumulus Cloud-Top Heights in the Presence of Strong Inversions , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[44]  J. Karlsson,et al.  Subtropical Cloud-Regime Transitions: Boundary Layer Depth and Cloud-Top Height Evolution in Models and Observations , 2010 .

[45]  Yongxiang Hu,et al.  A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface , 2010 .

[46]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[47]  Ab Davis,et al.  First results from a dual photoelastic-modulator-based polarimetric camera. , 2010, Applied optics.

[48]  F. Bréon,et al.  Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission , 2011 .

[49]  Russell Chipman,et al.  Achromatic athermalized retarder fabrication. , 2011, Applied optics.

[50]  Pavel Litvinov,et al.  Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements , 2011 .

[51]  Russell A. Chipman,et al.  Novel airborne imaging polarimeter undergoes flight testing , 2011 .

[52]  Feng Xu,et al.  Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere overlying a polarizing surface. , 2011, Optics letters.

[53]  Anna-Britt Mahler,et al.  Analysis of static and time-varying polarization errors in the multiangle spectropolarimetric imager. , 2011, Applied optics.

[54]  Brian Cairns,et al.  Accuracy Assessments of Cloud Droplet Size Retrievals from Polarized Reflectance Measurements by the Research Scanning Polarimeter , 2012 .

[55]  Jens Redemann,et al.  Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign , 2012 .

[57]  Russell A. Chipman,et al.  Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager , 2012 .

[58]  R. Davies,et al.  Detecting tropical thin cirrus using Multiangle Imaging SpectroRadiometer's oblique cameras and modeled outgoing longwave radiation , 2012 .