Delta20 - categoricity in Boolean algebras and linear orderings
暂无分享,去创建一个
[1] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[2] S. S. Goncharov,et al. Problem of the number of non-self-equivalent constructivizations , 1980 .
[3] Michael Moses. Recursive linear orders with recursive successivities , 1984, Ann. Pure Appl. Log..
[4] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[5] John Chisholm,et al. Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.
[6] S. S. Goncharov,et al. Autostability of models and Abelian groups , 1980 .
[7] S. S. Goncharov,et al. Autostability and computable families of constructivizations , 1975 .
[8] Jeffrey B. Remmel. Recursively categorical linear orderings , 1981 .
[9] Jeffrey B. Remmel,et al. Recursive isomorphism types of recursive Boolean algebras , 1981, Journal of Symbolic Logic.
[10] Michael Stob,et al. Computable Boolean algebras , 2000, Journal of Symbolic Logic.
[11] R. Soare. Recursively enumerable sets and degrees , 1987 .
[12] Sabine Koppelberg,et al. Handbook of Boolean Algebras , 1989 .
[13] Julia F. Knight,et al. Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..
[14] O. V. Kudinov. Criteria of autostability for 1-decidable models , 1992 .
[15] S. S. Goncharov,et al. Autostability of models , 1980 .
[16] S. S. Goncharov,et al. The quantity of nonautoequivalent constructivizations , 1977 .