Delta20 - categoricity in Boolean algebras and linear orderings

We characterize Δ20-categoricity in Boolean algebras and linear orderings under some extra effectiveness conditions. We begin with a study of the relativized notion in these structures.

[1]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[2]  S. S. Goncharov,et al.  Problem of the number of non-self-equivalent constructivizations , 1980 .

[3]  Michael Moses Recursive linear orders with recursive successivities , 1984, Ann. Pure Appl. Log..

[4]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[5]  John Chisholm,et al.  Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.

[6]  S. S. Goncharov,et al.  Autostability of models and Abelian groups , 1980 .

[7]  S. S. Goncharov,et al.  Autostability and computable families of constructivizations , 1975 .

[8]  Jeffrey B. Remmel Recursively categorical linear orderings , 1981 .

[9]  Jeffrey B. Remmel,et al.  Recursive isomorphism types of recursive Boolean algebras , 1981, Journal of Symbolic Logic.

[10]  Michael Stob,et al.  Computable Boolean algebras , 2000, Journal of Symbolic Logic.

[11]  R. Soare Recursively enumerable sets and degrees , 1987 .

[12]  Sabine Koppelberg,et al.  Handbook of Boolean Algebras , 1989 .

[13]  Julia F. Knight,et al.  Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..

[14]  O. V. Kudinov Criteria of autostability for 1-decidable models , 1992 .

[15]  S. S. Goncharov,et al.  Autostability of models , 1980 .

[16]  S. S. Goncharov,et al.  The quantity of nonautoequivalent constructivizations , 1977 .