Rapid Thermal Processing With Reactive Gases

Two major trends have always been consistent in silicon integrated circuit technologies: lateral and vertical scaling of the device area into the submicron regime and the increase in wafer size. The growth of high quality thin thermal silicon dielectrics on the order of 3 to 15 nm constitutes one of the major challenges associated with submicronmeter silicon ULSI. Mutually conflicting requirements the growth conditions arise from process integration. Growth times for thermal oxides in the 10 nm regime are very short at high temperatures. Consequently, oxide growth occurs under the initial phase growth kinetics, which is hard to control in furnaces and is currently not well understood. Silicon dioxide films with good electrical characteristics require high temperatures both during growth and post oxidation annealing1,2. Chlorine-based mobile ion gettering enhances the oxidation rate and requires activation temperatures on the order of 1100°C 3,4. Two step oxide growth processes have been suggested as one partial solution to the above problems5, but they seem to require excessively long high temperature steps for post-oxidation annealing and chlorine activation.

[1]  W. Oldham,et al.  A multiwafer plasma system for anodic nitridation and oxidation , 1984, IEEE Electron Device Letters.

[2]  T. Hori,et al.  Excellent charge-trapping properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing , 1988, IEEE Electron Device Letters.

[3]  S. Senturia,et al.  Radiation effects in nitrided oxides , 1983, IEEE Electron Device Letters.

[4]  Hideo Sunami Thermal Oxidation of Phosphorus‐Doped Polycrystalline Silicon in Wet Oxygen , 1978 .

[5]  H. Esaki,et al.  Electrical and physical characteristics of thin nitrided oxides prepared by rapid thermal nitridation , 1987, IEEE Transactions on Electron Devices.

[6]  Donald R. Young,et al.  Reduction of electron and hole trapping in SiO2 by rapid thermal annealing , 1984 .

[7]  A. Cassuto,et al.  Kinetics and mechanism of low-pressure, high-temperature oxidation of silicon-II , 1971 .

[8]  H. Huang,et al.  Effects of annealing and electromigration on surface morphology of polycrystalline films , 1983 .

[9]  J. Sturm,et al.  Limited reaction processing: In-situ metal—oxide—semiconductor capacitors , 1986, IEEE Electron Device Letters.

[10]  Eugene A. Irene,et al.  A Viscous Flow Model to Explain the Appearance of High Density Thermal SiO2 at Low Oxidation Temperatures , 1982 .

[11]  J. Krusius,et al.  Rapid thermal nitridation of thin thermal silicon dioxide films , 1985 .

[12]  Joseph Blanc,et al.  A revised model for the oxidation of Si by oxygen , 1978 .

[13]  Earl A. Gulbransen,et al.  The high-temperature oxidation, reduction, and volatilization reactions of silicon and silicon carbide , 1972 .

[15]  Hiroshi Iwasaki,et al.  Correlation between electron trap density and hydrogen concentration in ultrathin rapidly reoxidized nitrided oxides , 1988 .

[16]  E. Harari Dielectric breakdown in electrically stressed thin films of thermal SiO2 , 1978 .

[17]  Osaake Nakajima,et al.  A Method of Forming Thin and Highly Reliable Gate Oxides Two Step Oxidation , 1980 .

[18]  Vijay K. Samalam,et al.  Theoretical model for the oxidation of silicon , 1985 .

[19]  James C. Sturm,et al.  Minority‐carrier properties of thin epitaxial silicon films fabricated by limited reaction processing , 1986 .

[20]  Ih-Chin Chen,et al.  Electrical breakdown in thin gate and tunneling oxides , 1985 .

[21]  S. Senturia,et al.  IIIB-5 high-field electron capture and emission in nitrided oxides , 1984, IEEE Transactions on Electron Devices.

[22]  W. P. Noble,et al.  Fundamental limitations on DRAM storage capacitors , 2008, IEEE Circuits and Devices Magazine.

[23]  H. Esaki,et al.  Interface states and fixed charges in nanometer-range thin nitrided oxides prepared by rapid thermal annealing , 1986, IEEE Electron Device Letters.

[24]  W. Shepherd Vapor Phase Deposition and Etching of Silicon , 1965 .

[25]  J. Bloem,et al.  Surface morphology of HCl etched silicon wafers: I. Gas phase composition in the silicon HCl system and surface reactions during etching , 1977 .

[26]  J.P. Krusius,et al.  Rapid thermal processing of thin gate dielectrics. Oxidation of silicon , 1985, IEEE Electron Device Letters.

[27]  Charles G. Sodini,et al.  Low Pressure Nitrided‐Oxide as a Thin Gate Dielectric for MOSFET's , 1983 .

[28]  M. Witcomb The angular variation of the sputter yield peak for silica glass targets , 1977 .

[29]  W. Schmid,et al.  Minority‐carrier lifetime in gold‐diffused silicon at high carrier concentrations , 1982 .

[30]  Bruce E. Deal,et al.  Dependence of Interface State Density on Silicon Thermal Oxidation Process Variables , 1979 .

[31]  J. Plummer,et al.  Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces , 1980 .

[32]  S. M. Hu,et al.  Thermal oxidation of silicon: Chemisorption and linear rate constant , 1984 .

[33]  A. S. Grove Physics and Technology of Semiconductor Devices , 1967 .

[34]  J. Bloem,et al.  Gas phase etching of silicon with HCl , 1974 .

[35]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[36]  R. B. Marcus,et al.  The Oxidation of Shaped Silicon Surfaces , 1982 .

[37]  James F. Gibbons,et al.  Limited reaction processing: Silicon epitaxy , 1985 .

[38]  D. Flowers Gate Oxide Degradation in the Polysilicon Doping/Activation Process , 1987 .

[39]  Y. Nissan-Cohen,et al.  High field current induced‐positive charge transients in SiO2 , 1983 .

[40]  Y. C. Cheng,et al.  The Effect of HCl and Cl2 on the Thermal Oxidation of Silicon , 1972 .

[41]  T. Nakamura,et al.  Advantages of thermal nitride and nitroxide gate films in VLSI process , 1982, IEEE Transactions on Electron Devices.

[42]  F. Habraken,et al.  Thermal nitridation of silicon dioxide films , 1982 .

[43]  J. Sturm,et al.  In-situ epitaxial silicon—oxide-doped polysilicon structures for MOS field-effect transistors , 1986, IEEE Electron Device Letters.

[44]  Polysilicon capacitor failure during rapid thermal processing , 1986, IEEE Transactions on Electron Devices.

[45]  M. Hamasaki Effect of oxidation-induced positive charges on the kinetics of silicon oxidation , 1982 .

[46]  Takashi Ito,et al.  Retardation of Destructive Breakdown of SiO2 Films Annealed in Ammonia Gas , 1980 .

[47]  S. Murarka,et al.  Kinetics of ultrathin SiO2 growth , 1986 .

[48]  SiO 2 Growth and Annealing by Lamp heating , 1985 .

[49]  A. S. Grove,et al.  Characteristics of the Surface‐State Charge (Qss) of Thermally Oxidized Silicon , 1967 .

[50]  G. Ghibaudo,et al.  A revised analysis of dry oxidation of silicon , 1983 .

[51]  John Arents,et al.  Thermodynamics of solids , 1962 .

[52]  S. Luryi,et al.  Hot‐electron memory effect in double‐layered heterostructures , 1984 .

[53]  S. Lee,et al.  Outdiffusion and diffusion mechanism of oxygen in silicon , 1985 .

[54]  R. Ronen,et al.  Hydrogen Chloride and Chlorine Gettering: An Effective Technique for Improving Performance of Silicon Devices , 1972 .

[55]  Stephen Aplin Lyon,et al.  New model of the rapid initial oxidation of silicon , 1985 .

[56]  H. Esaki,et al.  Effect of nitrogen distribution in nitrided oxide prepared by rapid thermal annealing on its electrical characteristics , 1987 .

[57]  Kenji Yoneda,et al.  Thin Silicon Dioxide Using the Rapid Thermal Oxidation (RTO) Process for Trench Capacitors , 1988 .